已知角α為銳角.
(1)若sinα=
3
5
,求sin(α-
π
4
)
的值;
(2)若sin(α+β)=
5
13
,sin(α-β)=-
5
13
,其中β∈[0,
π
2
]
,求sinβ的值.
分析:(1)由sinα=
3
5
,且α為銳角可求得cosα=
4
5
,從而可求sin(α-
π
4
);
(2)將sin(α+β)=
5
13
與sin(α-β)=-
5
13
展開(kāi)相加可求得2sinαcosβ=0,依題意分析判斷即可求得sinβ的值.
解答:解:(1)∵α為銳角且sinα=
3
5

∴cosα=
4
5
,
又sin(α-
π
4
)=
2
2
(sinα-cosα)=-
2
10

(2)由sin(α+β)=
5
13
,
sin(α-β)=-
5
13
展開(kāi)相加得:
2sinαcosβ=0,α∈(0,
π
2
),β∈[0,
π
2
],
∴cosβ=0,
∴sinβ=1.
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),考查同角三角函數(shù)間的基本關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α、β為銳角,且1-cos2α=sinαcosα,tan(β-α)=
13
,則β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A為銳角,且f(A)=
(cos2A+1)sinA
2(cos2
A
2
-sin2
A
2
)
+
cos2A+1
2

(1)將f(A)化簡(jiǎn)成f(A)=Msin(ωA+φ)+N的形式;
(2)若A+B=
12
,f(A)=1,BC=2
,求邊AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A為銳角,角A、B、C的對(duì)邊分別為a、b、c,sinA=
2
2
3

(1)求tan2
B+C
2
+sin2
A
2
的值;
(2)若a=2
2
,S△ABC=
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年平遙中學(xué)) (10分)  在 △ABC 中,已知角 A 為銳角,且

 

(1)求f(A) 的最大值;

(2)若A+B= ,f(A)=1,BC=2,求 △ABC 的三個(gè)內(nèi)角和 AC 邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知角α、β為銳角,且1-cos2α=sinαcosα,tan(β-α)=數(shù)學(xué)公式,則β=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案