精英家教網 > 高中數學 > 題目詳情

【題目】若函數f(x)=ax2﹣(2a+1)x+a+1對于a∈[﹣1,1]時恒有f(x)<0,則實數x的取值范圍是(
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)

【答案】A
【解析】解:函數可整理為f(x)=(x2﹣x+1)a+1﹣x
∵對于a∈[﹣1,1]時恒有f(x)<0,
∴(x2﹣x+1)a+1﹣x<0恒成立.
令g(a)=(x2﹣2x+1)a+1﹣x
則函數g(a)在區(qū)間[﹣1,1]上的最大值小于0,
∵g(a)為一次函數,且一次項系數x2﹣2x+1>0,
∴函數g(a)在區(qū)間[﹣1,1]上單調遞增,
∴g(a)max=g(1)=x2﹣2x+1+1﹣x=x2﹣3x+2<0
解得1<x<2
故選:A
【考點精析】根據題目的已知條件,利用二次函數的性質的相關知識可以得到問題的答案,需要掌握當時,拋物線開口向上,函數在上遞減,在上遞增;當時,拋物線開口向下,函數在上遞增,在上遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】直線l過直線x+y﹣2=0和直線x﹣y+4=0的交點,且與直線3x﹣2y+4=0平行,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關于原點對稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點.

(1)求點M的軌跡C的方程;

(2)過點G(0, )的動直線l與點的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大;
(2)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是一個空間幾何體的正視圖和俯視圖,則它的側視圖為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象在處的切線方程為,其中是自然對數的底數.

(1)若對任意的,都有成立,求實數的取值范圍;

(2)若函數的兩個零點為,試判斷的正負,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A,B,C為銳角△ABC的內角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否構成等差數列?并證明你的結論;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E為PB的中點.
(1)求證:CE∥平面PAD;
(2)求直線CE與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面的中點,連接 (如圖2).

(1)求證: ;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

同步練習冊答案