12.如果點(diǎn)P在平面區(qū)域$\left\{{\begin{array}{l}{x≥1}\\{y≤2}\\{x≤y}\end{array}}\right.$上,點(diǎn)M的坐標(biāo)為(3,0),那么|PM|的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{2}$C.$\frac{3}{2}\sqrt{2}$D.$2\sqrt{2}$

分析 由約束條件作出可行域,再由點(diǎn)到直線的距離公式求出|PM|的最小值.

解答 解:由約束條件$\left\{{\begin{array}{l}{x≥1}\\{y≤2}\\{x≤y}\end{array}}\right.$作出可行域如圖,

由圖可知,|PM|的最小值為M(3,0)到直線x-y=0的距離,等于$\frac{|3|}{\sqrt{2}}=\frac{3\sqrt{2}}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,已知R(x0,y0)是橢圓C:$\frac{x^2}{24}+\frac{y^2}{12}$=1上的一點(diǎn),從原點(diǎn)O向圓R:(x-x02+(y-y02=8作兩條切線,分別交橢圓于P,Q兩點(diǎn).
(1)若R點(diǎn)在第一象限,且直線OP、OQ互相垂直,求圓R的方程;
(2)若直線OP,OQ的斜率存在,并記為k1,k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知:①命題“若xy=1,則x,y互為倒數(shù)”的逆命題;
②命題“所有模相等的向量相等”的否定;
③命題“若m≤1,則x2-2x+m=0有實(shí)根”的逆否命題;
④命題“若A∩B=A,則A?B的逆否命題.
其中能構(gòu)成真命題的是①②③(填上你認(rèn)為正確的命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則A∩(∁UB)為(  )
A.{0,1,3}B.{1,3}C.{0,2,4}D.{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示的流程圖,若輸入x的值為0,則輸出x的值為(  )
A.2016B.2016.5C.2019D.2017.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若p:x<-1,q:x<-4,則?p是?q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.三維柱形圖與獨(dú)立性檢驗(yàn)判斷兩個(gè)分類變量是否有關(guān)系,哪一個(gè)能更精確地判斷可能程度:獨(dú)立性檢驗(yàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.定義在關(guān)于原點(diǎn)對(duì)稱區(qū)間上的任意一個(gè)函數(shù),都可表示成“一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和(或差)”.設(shè)f(x)是定義域?yàn)镽的任一函數(shù),$F(x)=\frac{f(x)+f(-x)}{2}$,$G(x)=\frac{f(x)-f(-x)}{2}$,試判斷F(x)與G(x)的奇偶性.現(xiàn)欲將函數(shù)f(x)=ln(ex+1)表示成一個(gè)奇函數(shù)g(x)和一個(gè)偶函數(shù)h(x)之和,則g(x)=$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,已知D是BC延長(zhǎng)線上一點(diǎn),若$\overrightarrow{BC}$=2$\overrightarrow{CD}$,點(diǎn)E為線段AD的中點(diǎn),$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$,則λ=$-\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案