精英家教網 > 高中數學 > 題目詳情
(2011•南通三模)某高校從參加今年自主招生考試的學生中隨機抽取容量為50的學生成績樣本,得頻率分布表如下:
組號 分組 頻數 頻率
第一組 [230,235) 8 0.16
第二組 [235,240) 0.24
第三組 [240,245) 15
第四組 [245,250) 10 0.20
第五組 [250,255] 5 0.10
合              計 50 1.00
(1)寫出表中①②位置的數據;
(2)為了選拔出更優(yōu)秀的學生,高校決定在第三、四、五組中用分層抽樣法抽取6名學生進行第二輪考核,分別求第三、四、五各組參加考核人數;
(3)在(2)的前提下,高校決定在這6名學生中錄取2名學生,求2人中至少有1名是第四組的概率.
分析:(1)由頻率分布表,可得①位置的數據為50-8-15-10-5=12,②位置的數據為1-0.16-0.24-0.20-0.1=0.3,即可得答案;
(2)讀表可得,第三、四、五組分別有15、10、5人,共15+10+5=30人,要求從中用分層抽樣法抽取6名學生,抽取比例為
6
30
,由第三、四、五組的人數,計算可得答案;
(3)設(2)中選取的6人為abcdef(其中第四組的兩人分別為d,e),記“2人中至少有一名是第四組”為事件A,用列舉法列舉從6人中任取2人的所有情形,進而可得事件A所含的基本事件的種數,由等可能事件的概率,計算可得答案.
解答:解:(1)由頻率分布表,可得①位置的數據為50-8-15-10-5=12,
②位置的數據為1-0.16-0.24-0.20-0.1=0.3,
故①②位置的數據分別為12、0.3; 
(2)讀表可得,第三、四、五組分別有15、10、5人,共15+10+5=30人,
要求從中用分層抽樣法抽取6名學生,
則第三組參加考核人數為15×
6
30
=3,
第四組參加考核人數為10×
6
30
=2,
第五組參加考核人數為5×
6
30
=1,
故第三、四、五組參加考核人數分別為3、2、1;
(3)設(2)中選取的6人為a、b、c、d、e、f(其中第四組的兩人分別為d,e),
則從6人中任取2人的所有情形為:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef}共有15種;
記“2人中至少有一名是第四組”為事件A,則事件A所含的基本事件的種數有9種.
所以P(A)=
9
15
=
3
5
,
故2人中至少有一名是第四組的概率為
3
5
點評:本題考查等可能事件的概率計算與頻率分布表的運用,是常見的題型,注意加強訓練.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•南通三模)定義在[1,+∞)上的函數f(x)滿足:①f(2x)=cf(x)(c為正常數);②當2≤x≤4時,f(x)=1-|x-3|.若函數的所有極大值點均落在同一條直線上,則c=
1或2
1或2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•南通三模)底面邊長為2m,高為1m的正三棱錐的全面積為
3
3
3
3
m2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•南通三模)已知(a+i)2=2i,其中i是虛數單位,那么實數 a=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•南通三模)如圖,在三棱柱ABC-A1B1C1中.
(1)若BB1=BC,B1C⊥A1B,證明:平面AB1C⊥平面A1BC1;
(2)設D是BC的中點,E是A1C1上的一點,且A1B∥平面B1DE,求
A1EEC1
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•南通三模)在平面直角坐標系xOy中,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,其焦點在圓x2+y2=1上.
(1)求橢圓的方程;
(2)設A,B,M是橢圓上的三點(異于橢圓頂點),且存在銳角θ,使
OM
=cosθ
OA
+sinθ
OB

(i)求證:直線OA與OB的斜率之積為定值;
(ii)求OA2+OB2

查看答案和解析>>

同步練習冊答案