以下資料是一位銷售經理收集來的每年銷售額和銷售經驗年數(shù)的關系的一組樣本數(shù)據(jù):
銷售經驗(年) 1 3 4 6 10 12
年銷售額(萬元) 8 9.5 9 10.5 11 12
(1)根據(jù)最小二乘法求出y關于x的線性回歸方程;
(2)試預測銷售經驗為8年時的年銷售額約為多少萬元(精確到十分位)?
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:(1)計算線性回歸方程中的系數(shù),可得線性回歸方程;
(2)x=8代入線性回歸方程,可得結論.
解答: 解:(1)
.
x
=
1+3+4+6+10+12
6
=6,
.
y
=
8+9.5+9+10.5+11+12
6
=10,
b
=
1×8+3×9.5+4×9+6×10.5+10×11+12×12
1+9+16+36+100+144
=
59
180
,
a
=10-6×
59
180
=
241
30

∴y關于x的線性回歸方程為
y
=
59
180
x+
241
30
;
(2)x=8年時,
y
=
59
180
×8+
241
30
≈10.7萬元.
點評:本題考查回歸方程,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式組
x+2y-4≥0
x-y-4≤0
y≤a
所表示的平面區(qū)域的面積等于6,則a的值為(  )
A、1
B、
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓G的離心率為
2
2
,其短軸兩端點為A(0,1),B(0,-1).
(Ⅰ)求橢圓G的方程;
(Ⅱ)若C、D是橢圓G上關于y軸對稱的兩個不同點,直線AC、BD與x軸分別交于點M、N.判斷以MN為直徑的圓是否過點A,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)求f(x)的單調區(qū)間;
(2)問過坐標原點可以作幾條直線與曲線y=f(x)相切?并說明理由;
(3)若g(x)=f(x)•e-x在區(qū)間(0,1)內是單調函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設點P為圓C1:x2+y2=2上的動點,過點P作x軸的垂線,垂足為Q.動點M滿足
2
MQ
=
PQ
(其中P,Q不重合).
(Ⅰ)求點M的軌跡C2的方程;
(Ⅱ)過直線x=-2上的動點T作圓C1的兩條切線,設切點分別為A,B.若直線AB與(Ⅰ)中的曲線C2交于C,D兩點,求
|AB|
|CD|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,水渠的橫截面積是等腰梯形,下底及兩邊坡的總長度為a,坡AD的傾角為60°,
(1)求橫截面的面積y與下底AB的寬x之間的函數(shù)解析式;
(2)若x∈[
a
4
,
a
2
],求y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角三角形ABC的斜邊長AB=2,現(xiàn)以斜邊AB為軸旋轉一周,得旋轉體.
(1)當∠A=30°時,求此旋轉體的體積;
(2)當∠A=45°時,求旋轉體表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某分公司有甲、乙、丙三個項目向總公司申報,總公司有Ⅰ、Ⅱ、Ⅲ三個部門進行評估審批,已知這三個部門的審批通過率分別為
1
2
、
2
3
2
3
.只要有兩個部門通過就能立項,立項的每個項目能獲得總公司100萬的投資.
(1)求甲項目能立項的概率;
(2)設該分公司這次申報的三個項目獲得的總投資額為X,求X的概率分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Ω={(x,y)|x+y<6,x>0,y>0},A={(x,y)|0<x<4,y>0,x-4y+4>0},若向區(qū)域Ω上隨機投擲一點P,則點P落入區(qū)域A中的概率為
 

查看答案和解析>>

同步練習冊答案