分析 化簡an-bn=-n+p-3n-4,從而判斷an-bn,an,bn的增減性,從而分類討論以確定最小值,從而解得.
解答 解:∵an-bn=-n+p-3n-4,
∴an-bn隨著n變大而變小,
又∵an=-n+p隨著n變大而變小,
bn=3n-4隨著n變大而變大,
∴①若c4=a4,
則{a4=−4+p≥4=34−4a5=−5+p<5=35−4−4+p<35−4,
解得,5≤p<7;
②若c4=b4,
則{a3=−3+p≥3=33−4a4=−4+p<4=34−44=34−4<a3=−3+p,
解得,4<p<5;
綜上所述,p∈(4,7);
故答案為:(4,7).
點(diǎn)評 本題考查了數(shù)列的單調(diào)性的判斷與應(yīng)用,同時(shí)考查了分類討論的思想方法應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0≤x≤1} | B. | {x|1<x<2} | C. | {x|0≤x<2} | D. | {x|0≤x≤1}∪{2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π2a3 | B. | π2a3 | C. | \frac{{π}^{2}}{2}a3 | D. | \frac{{π}^{2}}{3}a3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com