對于函數(shù),若在定義域內存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
(Ⅰ)是,理由詳見解析;(Ⅱ);(Ⅲ).
【解析】
試題分析:(Ⅰ)判斷方程是否有解;(Ⅱ)在方程有解時,通過分離參數(shù)求取值范圍;(Ⅲ)在不便于分離參數(shù)時,通二次函數(shù)的圖象判斷一元二次方程根的分布.
試題解析:為“局部奇函數(shù)”等價于關于的方程有解.
(Ⅰ)當時,
方程即有解,
所以為“局部奇函數(shù)”. 3分
(Ⅱ)當時,可化為,
因為的定義域為,所以方程在上有解. 5分
令,則.
設,則,
當時,,故在上為減函數(shù),
當時,,故在上為增函數(shù),. 7分
所以時,.
所以,即. 9分
(Ⅲ)當時,可化為
.
設,則,
從而在有解即可保證為“局部奇函數(shù)”. 11分
令,
1° 當,在有解,
由,即,解得; 13分
2° 當時,在有解等價于
解得. 15分
(說明:也可轉化為大根大于等于2求解)
綜上,所求實數(shù)m的取值范圍為. 16分
考點:函數(shù)的值域、方程解的存在性的判定.
科目:高中數(shù)學 來源: 題型:
x+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇省蘇州市高三暑假自主學習測試文科數(shù)學試卷(解析版) 題型:解答題
對于函數(shù),若在定義域內存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(Ⅱ)若是定義在區(qū)間上的“局部奇函數(shù)”,求實數(shù)的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆吉林省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:填空題
對于函數(shù),若在其定義域內存在兩個實數(shù),使當時,則稱函數(shù)為“Kobe函數(shù)”.若是“Kobe函數(shù)”,則實數(shù)的取值范圍是________________
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com