在正四棱錐P-ABCD中(如圖),若異面直線PA與BC所成角的正切值為2,底面邊長(zhǎng)AB=4.
(1)求側(cè)棱與底面ABCD所成角的大。
(2)求四棱錐P-ABCD的體積.

解:(1)過(guò)P作斜高PE,PO⊥底面ABCD,AD∥BC∴∠PAD為異面直線PA與BC所成的角θ且tanθ=2(3分)
在Rt△PEA中tanθ=2=且AE=2所以PE=4,(5分)
正四棱錐P-ABCD的高為在Rt△POA中,∴,
側(cè)棱與底面ABCD所成角的大小為( 或?qū)懗?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/105630.png' />) (7分)
(2)VP--ABCD=(14分)
分析:(1)要求側(cè)棱與底面ABCD所成角的大小,關(guān)鍵是找出側(cè)棱在底面ABCD上的射影.過(guò)P作斜高,則∠PAD為異面直線PA與BC所成的角,進(jìn)而可求側(cè)棱與底面ABCD所成角的大小
(2)求四棱錐P-ABCD的體積,關(guān)鍵是求出底面積與高,進(jìn)而利用公式求解.
點(diǎn)評(píng):本題的考點(diǎn)是直線與平面所成的角,主要考查側(cè)棱與底面ABCD所成角的大小,關(guān)鍵是找出側(cè)棱在底面ABCD上的射影,考查幾何體的體積,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、在正三棱錐P-ABC中,D、E分別是AB、BC的中點(diǎn),有下列四個(gè)論斷:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE;④平面PDE⊥平面ABC.其中正確的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正三棱錐P-ABC中,D為PA的中點(diǎn),O為△ABC的中心,給出下列四個(gè)結(jié)論:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正確結(jié)論的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱錐PABC中,D是側(cè)棱PA的中點(diǎn),O是底面ABC的中心,則下列四個(gè)結(jié)論中正確的是(  )

A.OD∥平面PBC                       B.ODPA

C.ODAC                                 D.PA=2OD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖,在正三棱錐PABC中,D是側(cè)棱PA的中點(diǎn),O是底面ABC的中心,則下列四個(gè)結(jié)論中正確的是

A.OD∥平面PBC                                     B.ODPA

C.ODAC                                               D.PA=2OD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高一下學(xué)期第一次階段考試?yán)砜茢?shù)學(xué) 題型:填空題

在正三棱錐P—ABC中,D為PA的中點(diǎn),O為△ABC的中心,給出下列四個(gè)結(jié)論:

①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.

其中正確結(jié)論的序號(hào)是                  .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案