下列函數(shù)為偶函數(shù)的是(  )
A、y=x
1
2
B、y=sinx
C、y=cosx
D、y=x3
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義進行判斷即可.
解答: 解:A.函數(shù)的定義域為[0,+∞),定義域關(guān)于原點不對稱,函數(shù)為非奇非偶函數(shù),
B.y=sinx是奇函數(shù).
C.y=cosx是偶函數(shù),滿足條件.
D.y=x3是奇函數(shù).
故選:C
點評:本題主要考查函數(shù)奇偶性的判斷,要求熟練掌握常見函數(shù)的奇偶性的性質(zhì),比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱ABC-A1B1C1中,所有棱長都是4,E是CC1的中點.
(1)求證:截面EA1B⊥面ABB1A;
(2)求截面EA1B的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f-1(x+1)是定義域為R的奇函數(shù),則函數(shù)y=f(1-2x)必過點( 。
A、(
1
2
,1)
B、(1,1)
C、(2,1)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx-
3
cosx的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x1、x2.是方程x2-(a-2)x+(a2+3a+5)=0(a為實數(shù))的二實根,則x12+x12的最大值為( 。
A、20B、19C、18D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
,a∈R.判斷函數(shù)f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+|x-a|+1(x∈R)具有奇偶性,則a=
 
,函數(shù)f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,
1
i
的共軛復(fù)數(shù)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=a(1+i)-(2+3i)為純虛數(shù),a為實數(shù),求a的值.

查看答案和解析>>

同步練習(xí)冊答案