【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓的方程為以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程

時,判斷直線的關(guān)系;

上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標

【答案】相交;

【解析】

試題分析:首先將直線的方程化為直角坐標方程,然后由圓心到直線距離小于半徑,可知圓與直線相交;首先由已知得圓心到直線的距離為,由此得到圓心與平行的直線方程,然后聯(lián)立圓的方程,可得交點坐標

試題解析:,

圓心到直線的距離為

所以直線相交

上有且只有一點到直線的距離等于,即圓心到直線的距離為

過圓心與平行的直線方程式為:與圓的方程聯(lián)立可得點為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形ABCP,APBC,APAB,AB=BC=AP=2,DAP的中點,E,F,G分別是PC,PD,CB的中點,PCD沿CD折起,使點P在平面ABCD內(nèi)的射影為點D,如圖2

1求證:AP平面EFG;

2求三棱錐P-ABC的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“金導電、銀導電、銅導電、錫導電,所以一切金屬都導電”.此推理方法是(   )

A. 完全歸納推理 B. 歸納推理 C. 類比推理 D. 演繹推理

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班有42名男生,30名女生,已知男女身高各有明顯不同,現(xiàn)欲調(diào)查平均身高,若采用分層抽樣方法,抽取男生1,女生1,這種做法是否合適,若不合適,應怎樣抽取?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的為( 。

A. 線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強

B. 線性相關(guān)系數(shù)r越小,兩個變量的線性相關(guān)性越弱

C. 用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好

D. 殘差平方和越小的模型,模型擬合的效果越好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某設備在正常運行時,產(chǎn)品的質(zhì)量,其中,為了檢驗設備是否正常運行,質(zhì)量檢查員需要隨機的抽取產(chǎn)品,測其質(zhì)量

1當質(zhì)量檢查員隨機抽檢時,測得一件產(chǎn)品的質(zhì)量為,他立即要求停止生產(chǎn),檢查設備請你根據(jù)所學知識,判斷該質(zhì)量檢查員的決定是否有道理,并說明你判斷的依據(jù);

進而,請你揭密質(zhì)量檢測員做出要求停止生產(chǎn),檢查設備的決定時他參照的質(zhì)量參數(shù)標準;

2請你根據(jù)以下數(shù)據(jù),判斷優(yōu)質(zhì)品與其生產(chǎn)季節(jié)有關(guān)嗎?

3該質(zhì)量檢查員從其住宅小區(qū)到公司上班的途中要經(jīng)過個有紅綠燈的十字路口,假設他在每個十字路口遇到紅燈或綠燈是相互獨立的,并且概率均為求該質(zhì)量檢查員在上班途中遇到紅燈的期望和方差

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左右焦點分別為,且離心率為,點為橢圓上一動點,面積的最大值為

1求橢圓的方程

2設橢圓的左頂點為,過右焦點的直線與橢圓相交于,兩點,連結(jié),并延長交直線分別于兩點,問是否為定值?若是,求出此定值;若不是,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:實數(shù)xy滿足x>1y>1,命題q: 實數(shù)x,y滿足x+y>2,則p是q的( )

A. 充要條件 B. 充分不必要條件

C. 必要不充分條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:,

1求最小的正實數(shù),使得對任意的,恒有

2求證:對任意的正整數(shù),恒有

查看答案和解析>>

同步練習冊答案