1.如圖,已知兩點P1(4,9)和P2(6,3).

(1)求以P1P2為直徑的圓的方程;

(2)試判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上,圓內(nèi),還是在圓外?

2.在本題中,求以P1為圓心,|P1P2|為半徑的圓,并判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上、圓內(nèi)、還是圓外?

3.在本題中,求以P2為圓心,|P1P2|為半徑的圓,并判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上、圓內(nèi)、還是圓外?

答案:
解析:

  1.

  2.

  3.方程為(x-6)2+(y-3)2=40,點M、N、Q也都在圓內(nèi).

  思路分析:對于本題中圓的方程可從兩個角度來考慮:(1)從確定圓的條件考慮,需要求圓心和半徑,可用待定系數(shù)法解決(解法一).(2)從圖形上動點P的性質(zhì)考慮,用求曲線方程的一般


提示:

  解法一從圓的兩個要素入手,確定出圓心和半徑,解法二則從動點的幾何特征入手,將圓周角為直角這一特征用坐標(biāo)加以表示.對于本題還可直接通過三角形斜邊上的中線等于斜邊的一半這一性質(zhì)列方程求解.

  另外,本題也可直接套用公式,即以點P1(x1,y1)、P2(x2,y2)為直徑端點的圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,F(xiàn)1、F2分別為橢圓C的左、右焦點,A(0,b),且
F1A
F2A
=-2過左焦點F1作直線l交橢圓于P1、P2兩點.
(1)求橢圓C的方程;
(2)若直線l的傾斜角a∈[
π
3
,
3
],直線OP1,OP2與直線x=-
4
3
3
分別交于點S、T,求|ST|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線C:y2=4x,過點P(
52
,1)
的直線l與拋物線C交點A、B兩點,且點P為弦AB的中點.
( I)求直線l的方程;
( II)若過點P斜率為-2的直線m與拋物線C交點A1、B1兩點,求證:PA•PB=PA1•PB1;
( III)過線段AB上任意一點P1(不含端點A、B)分別做斜率為k1、k2(k1≠k2)的直線l1,l2,若l1交拋物線C于A1、B1兩點,l2交拋物線C于A2,B2兩點,且:P1A1•P1B1=P1A2•P1B2,試求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)如圖,已知橢圓E:
x2
a2
+
y2
b2
=1 (a>b>0)
的離心率是
2
2
,P1、P2是橢圓E的長軸的兩個端點(P2位于P1右側(cè)),點F是橢圓E的右焦點.點Q是x軸上位于P2右側(cè)的一點,且滿足
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2

(Ⅰ) 求橢圓E的方程以及點Q的坐標(biāo);
(Ⅱ) 過點Q的動直線l交橢圓E于A、B兩點,連結(jié)AF并延長交橢圓于點C,連結(jié)BF并延長交橢圓于點D.
①求證:B、C關(guān)于x軸對稱;
②當(dāng)四邊形ABCD的面積取得最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上饒二模)如圖,已知P是焦距為上一點,過P的直線與雙曲線C的兩條漸近線分別交于點P1,P2,且
OP
=
1
3
OP1
+
2
3
OP2
,O
為坐標(biāo)原點.
(1)試求當(dāng)S△OP1P2取得最大值時,雙曲線C的方程;
(2)設(shè)滿足條件(1)的雙曲線C的兩個頂點為A1,A2,直線l過定點D(3,0),且與雙曲線交于M,N兩點(M不為頂點),求證:直線A1M,A2N的交點的橫坐標(biāo)為定值.

查看答案和解析>>

同步練習(xí)冊答案