已知函數(shù)f(x)=
x
x-a
,若a=-2,判斷f(x)在(-∞,-2)內(nèi)的單調(diào)性.
考點:函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應用
分析:a=-2時,化簡f(x),用定義判斷f(x)在(-∞,-2)內(nèi)的增減性即可.
解答: 解:a=-2時,f(x)=
x
x-(-2)
=
x
x+2
=1-
2
x+2
,
任取x1<x2<-2,則
f(x1)-f(x2)=(1-
2
x1+2
)-(1-
2
x2+2

=
2(x1-x2)
(x1+2)(x2+2)

∵x1<x2<-2,
∴2(x1-x2)<0,(x1+2)(x2+2)>0,
∴f(x1)<f(x2);
∴f(x)在(-∞,-2)內(nèi)是增函數(shù).
點評:本題考查了判斷函數(shù)的單調(diào)性問題,解題時可以用單調(diào)性的定義進行判斷,是基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
x-1
x-2
+(x-1)0
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在區(qū)間G上有定義,若對任意x1,x2∈G,有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)],則稱f(x)為區(qū)間G上的凹函數(shù).判斷下列函數(shù)是否為給定區(qū)間上的凹函數(shù)?并分別予以證明.
(1)f(x)=-2x2,x∈R;
(2)f(x)=2x,x∈R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是定義在R上的奇函數(shù),且當x<0時,f(x)=-x2-2x+a,若?x∈[0,+∞),f(x)≥f(a)恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線C的方程為
x2
4
-y2=1,直線l的方程是y-1=k(x-2).當k為何值時,直線l與雙曲線C滿足下列條件:
(1)有兩個公共點;
(2)僅有一個公共點;
(3)沒有公共點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
x2-2x+2
的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)是定義在R上的增函數(shù)且f(x)≠0,對于任意x1,x2∈R都有f(x1+x2)=f(x1)•f(x2
(1)求證:f(x)>0;
(2)求證:f(x1-x2)=
f(x1)
f(x2)
;
(3)若f(1)=2,解不等式f(3x)>4f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列條件中,可得出直線a∥平面α的是(  )
A、a與α內(nèi)的兩條相交直線不相交
B、a與α內(nèi)的所有直線都不相交
C、a與α內(nèi)的無數(shù)條直線不相交
D、a與α內(nèi)的無數(shù)條直線平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1-x
ax
+lnx.
(Ⅰ)當a=1時,求f(x)的極值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:lnn>
1
2
+
1
3
+
1
4
+…+
1
n
(n∈N*且n≥2).

查看答案和解析>>

同步練習冊答案