設函數(shù)f(x)=4x3+ax2+bx+5在x=與x=-1時有極值.
(1)寫出函數(shù)的解析式;
(2)指出函數(shù)的單調區(qū)間;
(3)求f(x)在[-1,2]上的最大值和最小值.
(1) f(x)= 4x3-3x2-18x+5
(2) (-1,)
(3) f(x)在[-1,2]上的最小值是-,最大值為16.
【解析】此題主要考查多項式函數(shù)的導數(shù),函數(shù)單調性的判定,函數(shù)最值,函數(shù)、方程等基礎知識,考查運算求解能力、推理論證能力及分析與解決問題的能力,難度不大.
(1)首先求出函數(shù)的導數(shù),然后f′(-1)=0,f′()=0,解出a、b的值,進而求出解析式
(2)f′(x)<0,求出函數(shù)的單調區(qū)間;
(3)由(1)求出端點處函數(shù)值,從而求出函數(shù)f(x)在[-1,2]上的最大值和最小值.
解:(1) f ¢(x)=12x2+2ax+b.?由題設知x = 與x =-1時函數(shù)有極值.
則x = 與x =-1滿足f ¢(x)=0.
解得a =-3,b =-18. ∴f(x)= 4x3-3x2-18x+5. ……4分
(2)f ¢(x)=12x2-6x-18=6(x+1)(2x-3),
令f ¢(x)>0得:(-∞,-1)和(,+∞)均為函數(shù)的單調遞增區(qū)間;
(-1,)為函數(shù)的單調遞減區(qū)間. ……8分
(3)極值點(-1, ) 均屬于[-1,2],?
又∵f(-1)=16, f(2)=-11, f()=- , ……10分
故f(x)在[-1,2]上的最小值是-,最大值為16. ……12分
注:其它解法可酌情給分.
科目:高中數(shù)學 來源: 題型:
設函數(shù)f(x)=x2-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R|g(x)<2},則M∩N為 ( )
A.(1,+∞) B.(0,1)
C.(-1,1) D.(-∞,1)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省武漢市高三11月調考文科數(shù)學試卷(解析版) 題型:選擇題
設函數(shù)f(x)=x3-4x+a,0<a<2.若f(x)的三個零點為x1,x2,x3,且x1<x2<x3,則( )
A.x1>-1 B.x2<0 C.x2>0 D.x3>2
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省臨海市高三第三次模擬理科數(shù)學試卷(解析版) 題型:選擇題
設函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個零點為x1,x2,x3,且x1<x2<x3,則
A.x1>-1 B.x2<0 C.x2>0 D.x3>2
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西省高二5月第一次周考文科數(shù)學試卷(解析版) 題型:選擇題
設函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個零點為x1,x2,x3,且x1<x2<x3,則
A.x1>-1 B.x2<0 C.x2>0 D.x3>2
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江西省高三第四次(12月)月考文科數(shù)學試卷(解析版) 題型:選擇題
設函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個零點為x1,x2,x3,且x1<x2<x3,則
A.x1>-1 B.x2<0 C.x2>0 D.x3>2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com