已知橢圓C的中心在坐標(biāo)原點(diǎn),橢圓C任意一點(diǎn)P到兩個(gè)焦點(diǎn)F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求橢圓C的方程;
(2)設(shè)過(guò)(0,-2)的直線l與橢圓C交于A、B兩點(diǎn),且
OA
OB
=0
(O為坐標(biāo)原點(diǎn)),求直線l的方程.
分析:(1)根據(jù)橢圓的定義,知 a=2,c=
3
,則b=
a2-c2
=1
.由此能求出動(dòng)點(diǎn)M的軌跡方程.
(2)當(dāng)直線l 的斜率不存在時(shí),不滿(mǎn)足題意.當(dāng)直線l的斜率存在時(shí),設(shè)l的方程為y=kx-2,設(shè)C(x1,y1),D(x2,y2),由
OC
OD
=0
,知x1x2+y1y2=0,由y1=kx1-2,y2=kx2-2,知y1y2=k2x1x2-2k(x1+x2)+4,由此入手能夠求出直線l的方程.
解答:解:(1)根據(jù)橢圓的定義,知 a=2,c=
3
,則b=
a2-c2
=1
. …(2分)
所以動(dòng)點(diǎn)M的軌跡方程為
x2
4
+y2=1
. …(4分)
(2)當(dāng)直線l 的斜率不存在時(shí),不滿(mǎn)足題意.
當(dāng)直線l的斜率存在時(shí),設(shè)l的方程為y=kx-2,設(shè)C(x1,y1),D(x2,y2),∵
OC
OD
=0
,∴x1x2+y1y2=0,∵y1=kx1-2,y2=kx2-2,∴y1y2=k2x1x2-2k(x1+x2)+4,
∴(1+k2)x1x2-2k(x1+x2)+4=0.①
由方程組
x2
4
+y2=1
y=kx-2

得(1+4k2)x2-16kx+12=0.
x1+x2=
16k
1+4k2
x1x2=
12
1+4k2
,
代入①,得(1+k2)•
12
1+4k2
-2k•
16k
1+4k2
+4=0

即k2=4,解得k=2或k=-2,
∴直線l的方程是y=2x-2或y=-2x-2.
點(diǎn)評(píng):本題考查橢圓方程和直線方程的求法,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)P(1,
32
)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2M⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過(guò)點(diǎn)P(
3
,
1
2
)
,離心率是
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過(guò)點(diǎn)E(-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•和平區(qū)一模)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
1
2
,它的一個(gè)頂點(diǎn)恰好是拋物線y=
3
12
x2的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若A、B是橢圓C上關(guān)x軸對(duì)稱(chēng)的任意兩點(diǎn),設(shè)P(-4,0),連接PA交橢圓C于另一點(diǎn)E,求證:直線BE與x軸相交于定點(diǎn)M;
(III)設(shè)O為坐標(biāo)原點(diǎn),在(II)的條件下,過(guò)點(diǎn)M的直線交橢圓C于S、T兩點(diǎn),求
OS
OT
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),它的一條準(zhǔn)線為x=-
5
2
,離心率為
2
5
5

(1)求橢圓C的方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線l交橢圓于A、B兩點(diǎn),交y軸于M點(diǎn),若
MA
=λ1
AF
, 
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案