分析 (1)由題意列關(guān)于a,c的方程組,求解方程組得a,c的值,結(jié)合隱含條件求得b2,則橢圓方程可求;
(2)設(shè)出過(guò)D且斜率為k的直線方程,聯(lián)立直線方程和橢圓方程,利用根與系數(shù)的關(guān)系得到A,B的橫縱坐標(biāo)的和與積,假設(shè)存在點(diǎn)E(0,m),使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值,由平面向量的數(shù)量積運(yùn)算結(jié)合根與系數(shù)的關(guān)系列式求得m值得答案.
解答 解:(1)由已知可得$\left\{\begin{array}{l}\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\ c=1\end{array}\right.$,解得a2=2,c2=1,
∴b2=a2-c2=1,
∴所求的橢圓方程為$\frac{x^2}{2}+{y^2}=1$;
(2)設(shè)點(diǎn)D(0,2),且斜率為k的直線l的方程為y=kx+2.
由$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=kx+2\end{array}\right.$,得1+2k2)x2+8kx+6=0.
則△=64k2-24(1+2k2)=16k2-24>0.
解得:$k<-\frac{{\sqrt{6}}}{2}$或$k>\frac{{\sqrt{6}}}{2}$.
設(shè)A(x1,y1),B(x2,y2),則${x_1}+{x_2}=-\frac{8k}{{1+2{k^2}}}$,${x_1}{x_2}=\frac{6}{{1+2{k^2}}}$,
又${y_1}{y_2}=(k{x_1}+2)(k{x_2}+2)={k^2}{x_1}{x_2}+2k({x_1}+{x_2})+4=-\frac{{2{k^2}-4}}{{2{k^2}+1}}$,
${y_1}+{y_2}=(k{x_1}+2)+(k{x_2}+2)=k({x_1}+{x_2})+4=\frac{4}{{2{k^2}+1}}$.
設(shè)存在點(diǎn)E(0,m),則$\overrightarrow{AE}=(-{x_1},m-{y_1})$,$\overrightarrow{BE}=(-{x_2},m-{y_2})$,
∴$\overrightarrow{AE}•\overrightarrow{BE}={x_1}{x_2}+{m^2}-m({y_1}+{y_2})+{y_1}{y_2}$=$\frac{6}{{2{k^2}+1}}+{m^2}-m•\frac{4}{{2{k^2}+1}}-\frac{{2{k^2}-4}}{{2{k^2}+1}}$=$\frac{{(2{m^2}-2){k^2}+{m^2}-4m+10}}{{2{k^2}+1}}$,
要使得$\overrightarrow{AE}•\overrightarrow{BE}=t$(t為常數(shù)),只要$\frac{{(2{m^2}-2){k^2}+{m^2}-4m+10}}{{2{k^2}+1}}=t$,
從而(2m2-2-2t)k2+m2-4m+10-t=0,
即$\left\{\begin{array}{l}2{m^2}-2-2t=0\\{m^2}-4m+10-t=0\end{array}\right.$$\begin{array}{l}(1)\\(2)\end{array}$,解得m=$\frac{11}{4}$,t=$\frac{105}{16}$.
故在y軸上,存在定點(diǎn)E($\frac{11}{4},0$),使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值$\frac{105}{16}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與圓錐曲線位置關(guān)系的應(yīng)用,訓(xùn)練了平面向量在解題中的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | 6 | C. | -6 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | $1+\frac{{\sqrt{3}}}{2}$ | D. | $\frac{π}{3}+\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40 | B. | 42 | C. | 48 | D. | 52 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
理科 | 文科 | 總計(jì) | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
總計(jì) | 30 | 20 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<a<b | B. | c<b<a | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com