已知角θ終邊上一點(diǎn)P(x,3),且cosθ=
10
10
x,求sinθ和tanθ的值.
考點(diǎn):任意角的三角函數(shù)的定義,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:直接利用三角函數(shù)的定義以及已知條件,求出x,然后求解即可.
解答: 解:由題意知r=|OP|=
x2+9
…(1分)
由三角函數(shù)的定義得cosθ=
x
r
=
x
x2+9
,又∵cosθ=
10
10
x
,∴
x
x2+9
=
10
10
x
…(2分)
解得x=±1或x=0…(5分)
當(dāng)x=1時(shí),P點(diǎn)坐標(biāo)為(1,3),此時(shí)cosθ=
10
10
sinθ=
3
10
=
3
10
10
,tanθ=
3
1
=3
…(8分)當(dāng)x=-1時(shí),P點(diǎn)坐標(biāo)為(-1,3),此時(shí)cosθ=
-
10
10
sinθ=
3
10
=
3
10
10
,tanθ=
3
-1
=-3
…(11分)
當(dāng)x=0時(shí),P點(diǎn)坐標(biāo)為(0,3),此時(shí)cosθ=0,sinθ=1,tanθ的值不存在.…(14分)
點(diǎn)評(píng):本題考查三角函數(shù)的定義的應(yīng)用,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某高校在2014年自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績(jī)較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,
(。┮阎獙W(xué)生甲和學(xué)生乙的成績(jī)均在第三組,求學(xué)生甲和學(xué)生乙恰有一人進(jìn)入第二輪面試的概率;
(ⅱ)學(xué)校決定在這已抽取到的6名學(xué)生中隨機(jī)抽取2名學(xué)生接受考官L的面試,設(shè)第4組中有ξ名學(xué)生被考官L面試,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A′B′C′棱長(zhǎng)均為2,E為AB中點(diǎn).點(diǎn)D在側(cè)棱BB′上.
(Ⅰ)求AD+DC′的最小值;
(Ⅱ)當(dāng)AD+DC′取最小值時(shí),在CC′上找一點(diǎn)F,使得EF∥面ADC′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|+|2x-1|
(1)解不等式f(x)>2;
(2)若?x∈R,不等式f(x)<
1
2
m2+m成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx-
3
cosx+2,向量
a
=(2,-cosα),
b
=(1,cot(α+
π
2
))(0<α<
π
4
)且
a
b
=
7
3

(Ⅰ)求f(x)在區(qū)間[
3
,
3
]上的最值;
(Ⅱ)求
2cos2α-sin2(α+π)
cosα-sinα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1+x2
),
(Ⅰ)判斷并證明函數(shù)y=f(x)的奇偶性;
(Ⅱ)判斷并證明函數(shù)y=f(x)在R上的單調(diào)性;
(Ⅲ)當(dāng)x∈[1,2]時(shí),不等式f(a•4x)+f(2x+1)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx+bx2+x的極值點(diǎn)是x=1和x=2.
(1)求a,b的值;
(2)求f(x)在[1,3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx在點(diǎn)x0處取得極大值5,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(diǎn)(1,0),(2,0),如圖所示.求:
(1)x0的值;
(2)a,b,c的值.
(3)若曲線y=f(x)(0≤x≤2)與y=m有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
X3-x2+ax-1存在極值點(diǎn),則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案