E、F分別是四面體PABC的棱AP、BC的中點(diǎn),PC=10,AB=6,EF=7,則異面直線AB與PC所成的角為


  1. A.
    60°
  2. B.
    45°
  3. C.
    30°
  4. D.
    120°
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方形ABCD中,E、F分別是AB、BC的中點(diǎn),現(xiàn)在沿DE、DF及EF把△CDF、△BEF折起,使A、B、C三點(diǎn)重合,重合后的點(diǎn)記為P,那么在四面體P-DEF中,必有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,給出下列四個(gè)命題:
①如果PA⊥BC,PB⊥AC,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點(diǎn)P到△ABC的三邊所在直線的距離都相等,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點(diǎn),那么EF=1;
④三棱錐P-ABC的各棱長均為1,則該三棱錐在任意一個(gè)平面內(nèi)的射影的面積都不大于
1
2
;
⑤如果三棱錐P-ABC的四個(gè)頂點(diǎn)是半徑為1的球的內(nèi)接正四面體的頂點(diǎn),則P與A兩點(diǎn)間的球面距離為π-arccos
1
3

其中正確命題的序號是
①④⑤
①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•昆明模擬)如圖,在正方形ABCD中,E、F分別是BC、CD的中點(diǎn),AC∩EF=G.現(xiàn)在沿AE、EF、FA把這個(gè)正方形折成一個(gè)四面體,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為P,則在四面體P-AEF中必有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湛江二模)四棱錐P-ABCD中,底面ABCD是邊長為2a的正方形,各側(cè)棱均與底面邊長相等,E、F分別是PA、PC的中點(diǎn).
(1)求證:PC∥平面BDE;
(2)求證:平面BDE丄平面BDF;
(3)求四面體E-BDF的體積.

查看答案和解析>>

同步練習(xí)冊答案