分析:(1)由
f′(x)=-1,通過導(dǎo)數(shù)的性質(zhì)求出f(x)的單調(diào)區(qū)間.
(2)①由a
na
n+1-2a
n+1+1=0,知
an+1=,1-an+1=1-=,由此能夠求出數(shù)列{a
n}的通項(xiàng)公式.
②當(dāng)a=1時,f(x)=ln(1+x)-x在[0,+∞)是單調(diào)減函數(shù),又f(0)=0,所以x>0,f(x)<f(0)=0,即ln(1+x)<x.所以對于k∈N
+,
>ln(1+)=ln(k+2)-ln(k+1),再由
ak=1-<1-(ln(k+2)-ln(k+1)),能夠證明S
n<n+1-ln(n+2).
解答:解:(1)∵
f′(x)=-1,
由
-1>0,得-a<x≤1-a,
由
,得x>1-a,
故f(x)在(-a,1-a]上是單調(diào)增函數(shù),在[1-a,+∞)上是單調(diào)減函數(shù).
(2)①∵a
na
n+1-2a
n+1+1=0,
∴
an+1=,1-an+1=1-=,
∴
== +1(a1≠1),
∴
{}是公差為1的等差數(shù)列,且首項(xiàng)為
=2,
故
=n+1,
∴
an=1-.
②由(1)知,當(dāng)a=1時,f(x)=ln(1+x)-x在[0,+∞)是單調(diào)減函數(shù),又f(0)=0,
∴x>0,f(x)<f(0)=0,即ln(1+x)<x.
∴對于k∈N
+,
>ln(1+)=ln(k+2)-ln(k+1),
∵
ak=1-<1-(ln(k+2)-ln(k+1)),
∴S
n=a
1+a
2+…+a
n<1-(ln3-ln2)+1-(ln4-ln3)+…+(ln(n+2)-ln(n+1))
=n+ln2-ln(n+2)
<n+1-ln(n+2).