一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,每次從中任取兩個(gè)球,當(dāng)兩個(gè)球的顏色不同時(shí),則規(guī)定為中獎(jiǎng).
(1)試用n表示一次取球中獎(jiǎng)的概率p;
(2)記從口袋中三次取球(每次取球后全部放回)恰有一次中獎(jiǎng)的概率為m,求m的最大值;
(3)在(Ⅱ)的條件下,當(dāng)m取得最大值時(shí)將5個(gè)白球全部取出后,對(duì)剩下的n個(gè)紅球作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4)),其余的紅球記上0號(hào),現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號(hào),求X的分布列、期望.
分析:(1)用古典概型求解即可.分母為從n+5任取兩個(gè),有Cn+52種方法,分子為兩個(gè)球的顏色不同的方法有Cn1C51種;
(2)每次取球后全部放回,故為獨(dú)立重復(fù)試驗(yàn),按照獨(dú)立重復(fù)試驗(yàn)的概率就解出概率,看作p的函數(shù),利用導(dǎo)數(shù)求最值,并求出對(duì)應(yīng)的n 即可;
(3)X的取值為0,1,2,3,4,利用古典概型分別求出概率,列出分布列,求期望即可.
解答:解:(1)每次從n+5任取兩個(gè),有C
n+52種方法.
它們是等可能的,其中兩個(gè)球的顏色不同的方法有C
n1C
51種,
一次取球中獎(jiǎng)的概率為
p==.
(2)設(shè)每次取球中獎(jiǎng)的概率為p次取球中恰有一次中獎(jiǎng)的概率是:
m=P
3(1)=C
31•p•(1-p)
2=3p
3-6p
2+3p(0<p<1
p數(shù)m'=9p
2-12p+3=3(p-1)(3p-1).
•因而
m(0,)上為增函數(shù),m
(,1)上為減函數(shù).
∴當(dāng)
p=,即
=,n=20,
mmax=(3)由(Ⅱ)知:紅球共20個(gè),則記上0的有10球,從中任取一球,有20法,它們是等可能的.故X的分布列是:
E(X)=0×+1×+2×+3×+4×=.
點(diǎn)評(píng):本題考查古典概型、獨(dú)立重復(fù)試驗(yàn)的概率、利用導(dǎo)數(shù)求最值、離散型隨機(jī)變量及分布列、期望等知識(shí),綜合性較強(qiáng).