【題目】是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與的濃度是否有關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與的濃度的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 100 | 102 | 108 | 114 | 116 |
的濃度(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根據(jù)上表數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)若周六同一時間段車流量是200萬輛,試根據(jù)(1)求出的線性回歸方程,預測此時的濃度為多少.
參考公式:,.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,是平面內(nèi)的一組基向量,為內(nèi)的定點,對于內(nèi)任意一點,當時,則稱有序?qū)崝?shù)對為點的廣義坐標,若點、的廣義坐標分別為、,對于下列命題:
① 線段、的中點的廣義坐標為;
② A、兩點間的距離為;
③ 向量平行于向量的充要條件是;
④ 向量垂直于向量的充要條件是.
其中的真命題是________(請寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名射擊運動員一次射擊命中目標的概率分別是0.7,0.6,且每次射擊命中與否相互之間沒有影響,求:
(1)甲射擊三次,第三次才命中目標的概率;
(2)甲、乙兩人在第一次射擊中至少有一人命中目標的概率;
(3)甲、乙各射擊兩次,甲比乙命中目標的次數(shù)恰好多一次的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 命題,都是假命題,則命題“”為真命題.
B. ,函數(shù)都不是奇函數(shù).
C. 函數(shù)的圖像關(guān)于對稱 .
D. 將函數(shù)的圖像上所有點的橫坐標伸長到原來的2倍后得到
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;
(Ⅱ)若關(guān)于的不等式的解集為,當時,求的最小值;
(Ⅲ)對任意的,,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于的二次函數(shù),其中,為實數(shù),事件為“函數(shù)在區(qū)間為增函數(shù)”.
(1)若為區(qū)間上的整數(shù)值隨機數(shù),為區(qū)間上的整數(shù)值隨機數(shù),求事件發(fā)生的概率;
(2)若為區(qū)間上的均勻隨機數(shù),為區(qū)間上的均勻隨機數(shù),求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),直線是曲線的一條切線.
(1)求實數(shù)a的值;
(2)若對任意的x(0,),都有,求整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子里裝有標號為的張標簽,隨機的選取兩張標簽.
(1)若標簽的選取是無放回的,求兩張標簽上的數(shù)字為相鄰整數(shù)的概率;
(2)若標簽的選取是有放回的,求兩張標簽上的數(shù)字至少有一個為5的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com