已知△ABC中,角A,B,C所對應(yīng)的邊的邊長分別為a,b,c,外接圓半徑是1,且滿足條件2(sin2A-sin2C)=(sinA-sinB)b,則△ABC面積的最大值為
 
分析:把b=2sinB 代入已知等式并應(yīng)用正弦定理得 a2+b2-c2=ab,由余弦定理 得cosC=
1
2
,得到C=60°,由ab=a2+b2-3≥2ab-3 求得ab最大值為3,從而求得△ABC面積
1
2
absinC
 的最大值.
解答:解:由正弦定理可得b=2RsinB=2sinB,代入已知等式得 2sin2A-2sin2C=2sinAsinB-2sin2B,
sin2A+sin2B-sin2C=sinAsinB,∴a2+b2-c2=ab,∴cosC=
a2+b2-c2
2ab
=
1
2

∴C=60°.
∵ab=a2+b2-c2=a2+b2-(2rsinC)2=a2+b2-3≥2ab-3,
∴ab≤3 (當(dāng)且僅當(dāng)a=b時,取等號),∴△ABC面積為
1
2
absinC
1
2
×3×
3
2
=
3
3
4
,
故答案為
3
3
4
點評:本題考查正弦定理、余弦定理,基本不等式的應(yīng)用,求出ab≤3是解題的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,AH為BC邊上的高,以下結(jié)論:①
AH
•(
AC
-
AB
)=0
;
AB
BC
<0⇒△ABC
為鈍角三角形;
AC
AH
|
AH
|
=csinB
;
BC
•(
AC
-
AB
)=a2
,其中正確的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C的對邊分別是a、b、c,且滿足b+c=
3
a
,設(shè)
m
=[cos(
π
2
+A),-1],
n
=(cosA-
5
4
,-sinA),
m
n
,試求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c.
(1)證明:
a+b
2a+b
c
a+c
;
(2)證明:不論x取何值總有b2x2+(b2+c2-a2)x+c2>0;
(3)若a>c≥2,證明:
1
a+c+1
-
1
(c+1)(a+1)
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A、B、C所對的邊長分別為a,b,c且角A,B、C成等差數(shù)列,△ABC的面積S=
b2-(a-c)2k
,則實數(shù)k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,a=
2
,向量
m
=(-1,1)
,
n
=(cosBcosC,sinBsinC-
2
2
)
,且
m
n

(Ⅰ)求A的大;
(Ⅱ)當(dāng)sinB+cos(
12
-C)
取得最大值時,求角B的大小和△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案