17.設a∈{1,3,5},b∈{2,4,8},則函數(shù)y=log${\;}_{\frac{a}}$$\frac{1}{x}$是增函數(shù)的概率為$\frac{1}{3}$.

分析 先一一列舉所有的基本事件,再找到滿足函數(shù)y=log${\;}_{\frac{a}}$$\frac{1}{x}$是增函數(shù),即0<$\frac{a}$<1的基本事件,根據(jù)概率公式計算即可.

解答 解:從a∈{1,3,5},b∈{2,4,8}取一個數(shù),共有(1,2),(1,4),(1,8),(3,2),(3,4),(3,8),(5,2),(5,4),(5,8),共9種,
其中0<$\frac{a}$<1的有,(3,2),(5,2),(5,4)共有3種,
則函數(shù)y=log${\;}_{\frac{a}}$$\frac{1}{x}$是增函數(shù)的概率為$\frac{3}{9}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點評 本題考查了古典概率的問題,關鍵是不重不漏的一一列舉,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=(m+$\frac{1}{m}$)lnx+$\frac{1}{x}$-x,其中常數(shù)m>0.
(1)當m=2時,求f(x)的極大值;
(2)已知m≥4,設A(x1,f(x1))、B(x2,f(x2))是曲線y=f(x)上的相異兩點,l1、l2是曲線y=f(x)在A、B兩點處的切線,若l1∥l2,求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,其中a>0.
(1)求函數(shù)f(x)的極值:
(2)若函數(shù)h(x)=f(x)-1在區(qū)間[$\frac{1}{e}$,e]上有兩個不同的零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.一物體的運動方程為s=7t2+8,則其在t=$\frac{1}{14}$時的瞬時速度為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.現(xiàn)有5人參加抽獎活動,每人依次從裝有5張獎票(其中3張為中獎票)的箱子中不放回地隨機抽取一張,直到3張中獎票都被抽出時活動結束,則活動恰好在第4人抽完后結束的概率為$\frac{3}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,邊長為2的菱形ABCD中,∠A=60°,E、F分別是BC,DC的中點,G為 BF、DE的交點,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}$=$\overrightarrow b$
(1)試用$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{AE}$,$\overrightarrow{BF}$,$\overrightarrow{CG}$;
(2)求$\overrightarrow{BF}$•$\overrightarrow{CG}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在1,2之間插入兩個數(shù),使之成為一個等差數(shù)列,則其公差為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.將函數(shù)y=sin3x的圖象向右平移$\frac{π}{12}$個單位所得函數(shù)的解析式為y=sin(3x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.函數(shù)y=$\left\{\begin{array}{l}2x,0≤x≤4\\ 8,4<x≤8\\ 2(12-x),8<x≤12\end{array}$,填補方框內(nèi)的內(nèi)容完成函數(shù)的函數(shù)值的程序.

查看答案和解析>>

同步練習冊答案