根據(jù)如圖的程序框圖,將輸出的x,y值依次分別記為x1,x2,…,x2013;y1,y2…y2013
(Ⅰ)寫出數(shù)列{xn},{yn}的通項公式(不要求寫出求解過程);
(Ⅱ)求Sn=x1(y1+1)+x2(y2+1)+…+xn(yn+1)(n≤2013).
考點:程序框圖
專題:計算題,算法和程序框圖
分析:循環(huán)體中x=x+2,y=3y+2是數(shù)列的遞推公式變形,從而求出通項公式,(2)錯位相減法求和.
解答: 解:(Ⅰ)由題意,數(shù)列{xn},{yn}的通項公式為
xn=2n-1,yn=3n-1,(n≤2013).
(Ⅱ)Sn=x1(y1+1)+x2(y2+1)+…+xn(yn+1)
=1×31+3×32+5×33+…+(2n-1)3n,
3Sn=1×32+3×33+5×34+…+(2n-1)3n+1
則2Sn=(2n-1)3n+1-3-2(32+33+34+…+3n),
∴Sn=(n-1)3n+1+3(n≤2013).
點評:本題考查了程序框圖的應(yīng)用,及錯位相減法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種商品每件進價9元,售價20元,每天可賣出69件.若售價降低,銷售量可以增加,且售價降低x(0≤x≤11)元時,每天多賣出的件數(shù)與x2+x成正比.已知商品售價降低3元時,一天可多賣出36件.
(Ⅰ)試將該商品一天的銷售利潤表示成x的函數(shù);
(Ⅱ)該商品售價為多少元時一天的銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對某電子元件進行壽命追蹤調(diào)查,情況如下.
壽命(h)100~200200~300300~400400~500500~600
個  數(shù)2030804030
(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)估計元件壽命在100~400h以內(nèi)的在總體中占的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(3-ax)(a>0,a≠1)
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在[2,6]上遞增,并且最小值為loga
7
9a
),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將進貨單價為80元的商品按90元一個售出時,能賣出400個,已知這種商品每個漲價1元,其銷售量就減少10個,為了取得最大利潤,每個售價應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)滿足方程f(x)-2f(
1
x
)=2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(cosx,sinx),
b
=(2sinx,-2cosx),
c
=
a
+m
b
,
d
=cos2x•
a
+sinx•
b
,f(x)=
c
d
,x∈R.
(1)當m=2時,求y=f(x)的取值范圍;
(2)若f(x)的最大值是7,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an},S20=21,S30=49,則S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將7個不同的小球全部放入編號為2和3的兩個小盒子里,使得每個盒子里的球的個數(shù)不小于盒子的編號,則不同的放球方法共有
 
種(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案