(12分)設(shè)直線與橢圓相切。 (I)試將表示出來(lái); (Ⅱ)若經(jīng)過(guò)動(dòng)點(diǎn)可以向橢圓引兩條互相垂直的切線,為坐標(biāo)原點(diǎn),求證:為定值。
(Ⅰ)   (Ⅱ)  
(I)將代入,整理得

,故
(Ⅱ)當(dāng)兩條切線的斜率都存在而且不等于時(shí),設(shè)其中一條的斜率為k,
則另外一條的斜率為 于是由上述結(jié)論可知橢圓斜率為k的切線方程為
    ① 又橢圓斜率為的切線方程為
    ②  由①得
由②得   兩式相加得
于是,所求P點(diǎn)坐標(biāo)滿足
因此, 當(dāng)一條切線的斜率不存在時(shí),另一條切線的斜率必為0,此時(shí)顯然也有 所以為定值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),,是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,—3)、N(5,1),若動(dòng)點(diǎn)C滿足交于A、B兩點(diǎn)。
(I)求證:
(2)在x軸上是否存在一點(diǎn),使得過(guò)點(diǎn)P的直線l交拋物線于D、E兩點(diǎn),并以線段DE為直徑的圓都過(guò)原點(diǎn)。若存在,請(qǐng)求出m的值,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)A(-2,-4),過(guò)點(diǎn)A作傾斜角為45 的直線l,交拋物線y2=2px(p>0)于B、C兩點(diǎn),且|BC|=210.(Ⅰ)求拋物線的方程;(Ⅱ)在(Ⅰ)中的拋物線上是否存在點(diǎn)D,使得|DB|=|DC|成立?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則當(dāng)取最小值時(shí),橢圓的離心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在面積為9的中,,且。現(xiàn)建立以A點(diǎn)為坐標(biāo)原點(diǎn),以的平分線所在直線為x軸的平面直角坐標(biāo)系,如圖所示。
(1)求AB、AC所在的直線方程;
(2)求以AB、AC所在的直線為漸近線且過(guò)點(diǎn)D的雙曲線的方程;
(3)過(guò)D分別作AB、AC所在直線的垂線DF、DE(E、F為垂足),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,
的公共弦過(guò)橢圓的右焦點(diǎn)。
⑴當(dāng)軸時(shí),求的值,并判斷拋物線的焦點(diǎn)是否在直線上;
⑵若,且拋物線的焦點(diǎn)在直線上,求的值及直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大.記點(diǎn)的軌跡為曲線
(1)求點(diǎn)的軌跡方程;
(2)設(shè)圓過(guò),且圓心的軌跡上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長(zhǎng)是否為定值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩條直線l1:2x-3y+2=0和l2:3x-2y+3=0,有一動(dòng)圓(圓心和半徑都動(dòng))與l1、l2都相交,且l1、l2被圓截得的弦長(zhǎng)分別是定值26和24,求圓心的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案