6.函數(shù)$f(x)={({\frac{1}{3}})^x}+{x^2}-2$的零點個數(shù)為(  )
A.0B.1C.2D.3

分析 問題轉(zhuǎn)化為g(x)=${(\frac{1}{3})}^{x}$和h(x)=-x2+2的交點個數(shù),畫出函數(shù)圖象,得到答案即可.

解答 解:$f(x)={({\frac{1}{3}})^x}+{x^2}-2$的零點個數(shù)
即g(x)=${(\frac{1}{3})}^{x}$和h(x)=-x2+2的交點個數(shù),
畫出函數(shù)圖象,如圖示:
,
結(jié)合圖象g(x)和h(x)2個交點,
故函數(shù)f(x)2個零點,
故選:C.

點評 本題考查了函數(shù)的零點問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.當(dāng)a=3,b=5,c=7時,執(zhí)行如圖所示的程序框圖,輸出的m值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點M(0,2),橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{3}$,橢圓E上一點G與橢圓長軸上的兩個頂點A,B連線的斜率之積等于-$\frac{1}{4}$.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點M的動直線l與E相交于P,Q兩點,當(dāng)△OPQ的面積最大時,求l的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|<$\frac{π}{2}$)的部分圖象如圖所示,下列說法正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(-$\frac{5π}{12}$,0)對稱
C.將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位得到的函數(shù)圖象關(guān)于y軸對稱
D.函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$](K∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.用秦九紹算法求f(x)=2x5-3x3+2x2-x+5,函數(shù)在x=2時的V2的值是( 。
A.4B.23C.12D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)定義在R上的奇函數(shù)函數(shù)f(x)=k•2x+1+(k-3)•2-x
(1)求k的值.
(2)用定義證明f(x)在定義域內(nèi)的單調(diào)性.
(3)若x∈[1,3]時,不等式f(x2-x)+f(tx+4)>0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=x2-(2a-1)x+2在區(qū)間$({-∞,\frac{1}{2}}]$上是減函數(shù),則實數(shù)a的。ā 。
A.a≤1B.a≥1C.a<1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$.
(1)當(dāng)x∈[-1,2]時,求函數(shù)f(x)的值域;
(2)解不等式f(x+1)>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,已知AB=4,B=60°,E為AC的中點,AD⊥BC,垂足為D,則$\overrightarrow{AD}$•$\overrightarrow{BE}$的值-6.

查看答案和解析>>

同步練習(xí)冊答案