若|
a
+
b
|=|
a
-
b
|=2|
a
|,則向量
a
+
b
b
的夾角為( 。
A、
π
6
B、
π
3
C、
3
D、
6
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:
OA
=
a
OB
=
b
,以OA,OB為鄰邊作平行四邊形OACB,則
OC
=
a
+
b
.由|
a
+
b
|=|
a
-
b
|=2|
a
|,可得四邊形OACB為矩形,利用cos<
a
+
b
,
b
=
|
a
|
|
a
+
b
|
即可得出.
解答: 解:作
OA
=
a
OB
=
b
,以OA,OB為鄰邊作平行四邊形OACB,
OC
=
a
+
b

∵|
a
+
b
|=|
a
-
b
|=2|
a
|,
∴四邊形OACB為矩形,
cos<
a
+
b
b
=
|
a
|
|
a
+
b
|
=
1
2
,
∴向量
a
+
b
b
的夾角為
π
6

故選:A.
點評:本題考查了向量的平行四邊形法則、矩形的性質、直角三角形的邊角關系,考查了數(shù)形結合的思想方法,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若將函數(shù)y=sin2x的圖象向左平移φ,φ∈(0,
π
2
)個單位,再向下平移一個單位所得的函數(shù)圖象過點P(
π
3
,-
1
2
),則φ的取值為(  )
A、
π
24
B、
π
12
C、
π
6
D、
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y,z∈R,且x-2y+2z=5,則(x+5)2+(y-1)2+(z+3)2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos
x
2
,1),
b
=(
3
sin
x
2
,cos2
x
2
),函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(2)若f(x)=1,求cos(
3
-2x)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,M、N是焦點為F的拋物線y2=2px(p>0)上兩個不同的點,且線段MN中點A的橫坐標為4-
p
2
,
(1)求|MF|+|NF|的值;
(2)若p=2,直線MN與x軸交于點B點,求點B橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
,
b
為向量,若
a
+
b
a
的夾角為60°,
a
+
b
b
的夾角為45°,則
|
a
|
|
b
|
=( 。
A、
3
3
B、
6
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=msinx-cosx,若x0是函數(shù)f(x)的一個極值點,且cos2x0=-
3
5
,則m的值為( 。
A、1B、±1C、2D、±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把10個相同的小球放入編號為123的三個盒子中,允許空盒,有幾種放法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)組a=(1,2,x),b=(y,3,4)c=(0,z,1)且2a+b=c求x,y,z.

查看答案和解析>>

同步練習冊答案