18.十七世紀(jì)英國著名數(shù)學(xué)家、物理學(xué)家牛頓創(chuàng)立的求方程近似解的牛頓迭代法,相較于二分法更具優(yōu)勢(shì),如圖給出的是利用牛頓迭代法求方程x2=6的正的近似解的程序框圖,若輸入a=2,?=0.02,則輸出的結(jié)果為( 。
A.3B.2.5C.2.45D.2.4495

分析 由題意,模擬程序的運(yùn)行過程,依次寫出每次循環(huán)得到的b,a,z的值,即可得出跳出循環(huán)時(shí)輸出a的值.

解答 解:模擬程序的運(yùn)行,可得
a=2,?=0.02,
執(zhí)行循環(huán)體,b=2,a=$\frac{5}{2}$,z=$\frac{1}{4}$,
不滿足條件z≤?,執(zhí)行循環(huán)體,b=$\frac{5}{2}$,a=$\frac{49}{20}$,z=$\frac{1}{50}$,
滿足條件z≤?,退出循環(huán),輸出a的值為$\frac{49}{20}$=2.45.
故選:C.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)a=30.4,b=log318,c=log550,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某校為研究學(xué)生語言學(xué)科的學(xué)習(xí)情況,現(xiàn)對(duì)高二200名學(xué)生英語和語文某次考試成績進(jìn)行抽樣分析.將200名學(xué)生編號(hào)為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(單位:分)繪成折線圖如下:

(Ⅰ)若第一段抽取的學(xué)生編號(hào)是006,寫出第五段抽取的學(xué)生編號(hào);
(Ⅱ)在這兩科成績差超過20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級(jí)學(xué)生的語文和英語兩科成績,寫出你的結(jié)論和理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x(5-x)>4},B={x|x≤a},若A∪B=B,則a的值可以是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=Asin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移$\frac{7π}{24}$個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[{-\frac{π}{3},θ}]$($θ>-\frac{π}{3}$)上的值域?yàn)閇-1,2],則θ等于( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且三角形的面積S=$\frac{\sqrt{3}}{2}$accosB.
(1)求角B的大;
(2)若a=2$\sqrt{15}$,點(diǎn)D在AB的延長線上,且AD=3,cos∠ADC=$\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.(x2-$\frac{2}{x}$+y)5的展開式中,含x3y2的項(xiàng)的系數(shù)為( 。
A.60B.-60C.80D.-80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2-9≤0},B={x|y=ln(-x2+x+12)},則A∩B=( 。
A.{x|-3≤x<3}B.{x|-2<x≤0}C.{x|-2<x<0}D.{x|x<0或x>2且x≠3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.f(x)=$\sqrt{x}$lnx在點(diǎn)(4,f(4))處的切線方程為(  )
A.(ln2+1)x-2y+4ln2-4=0B.(ln4+1)x-2y+7ln4-1=0
C.(ln4+1)x-2y+8ln2-4=0D.(ln2+1)x+2y+7ln2-4=0

查看答案和解析>>

同步練習(xí)冊(cè)答案