13.在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,設(shè)點(diǎn)Q是曲線$\frac{x^2}{3}$+y2=1上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值為$\sqrt{2}$.

分析 設(shè)Q($\sqrt{3}cosθ$,sinθ),求出點(diǎn)Q到直線x-y+4=0的距離,利用三角函數(shù)性質(zhì)能求出點(diǎn)到直線l的距離的最小值.

解答 解:∵點(diǎn)Q是曲線$\frac{x^2}{3}$+y2=1上的一個(gè)動(dòng)點(diǎn),
∴設(shè)Q($\sqrt{3}cosθ$,sinθ),
點(diǎn)Q到直線x-y+4=0的距離d=$\frac{|\sqrt{3}cosθ-sinθ+4|}{\sqrt{1+1}}$=$\frac{|2sin(θ+\frac{2π}{3})+4|}{\sqrt{2}}$,
∴當(dāng)sin($θ+\frac{2π}{3}$)=-1時(shí),它到直線l的距離的最小值為$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查點(diǎn)到直線的距離的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓參數(shù)方程的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.半徑為1的球的表面積為( 。
A.πB.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某中學(xué)在運(yùn)動(dòng)會(huì)期間舉行定點(diǎn)投籃比賽,規(guī)定每人投籃3次,投中一球得1分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的.已知小明每次投籃投中的概率都是$\frac{1}{3}$.
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在3次投籃后的總得分ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某人有5把鑰匙,其中只有一把可以打開房門,他隨意地進(jìn)行試開,若試過的鑰匙放在一旁,打開門時(shí)試過的次數(shù)ξ為隨機(jī)變量,則P(ξ=3)等于( 。
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3!}{5!}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知0<α<π,-sinα=2cosα,則2sin2α-sinαcosα+cos2α的值為$\frac{11}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD=PD=1,AB=2,ABCD為矩形,點(diǎn)E是線段AB中點(diǎn).
(1)求證:PE⊥CE;
(2)求三棱錐A-CPE的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ABC=∠BAD=90°,且PA=AB=BC=$\frac{1}{2}$AD=1,PA⊥平面ABCD.
(1)求PB與平面PCD所成角的正弦值;
(2)棱PD上是否存在一點(diǎn)E滿足∠AEC=90°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C所對(duì)的邊分別記作a,b,c.已知B=60°,且a,b,c成等差數(shù)列.
(1)求證:a,b,c成等比數(shù)列;
(2)若點(diǎn)D在邊AC上,且$\overrightarrow{AD}$=2$\overrightarrow{DC}$,求∠CBD的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>1)}\\{f(x+2)(x≤1)}\end{array}\right.$,則f(1)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案