已知橢圓C:
x2
a
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,離心率為
2
2
,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為
2
,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖所示,設(shè)直線l與圓x2+y2=r2(1<r<
2
)、橢圓C同時(shí)相切,切點(diǎn)分別為A,B,求|AB|的最大值.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:圓錐曲線中的最值與范圍問(wèn)題
分析:(Ⅰ)由已知得
c
a
=
2
2
2b2
a
=
2
a2=b2+c2
,由此能求出橢圓方程.
(Ⅱ)設(shè)直線l的方程為y=kx+m,聯(lián)立
y=kx+m
x2
2
+y2=1
,得(1+4k2)x2+8kmx+4m2-4=0,由此利用根的判別式、韋達(dá)定理,結(jié)合已知條件能推導(dǎo)出當(dāng)R=
2
時(shí),|AB|取得最大值1.
解答: 解:(Ⅰ)∵橢圓C:
x2
a
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,
離心率為
2
2
,過(guò)點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為
2
,
c
a
=
2
2
2b2
a
=
2
a2=b2+c2
,
解得a=
2
,b=1,
∴橢圓方程為
x2
2
+y2
=1.
(Ⅱ)由題意得直線l的斜率存在,設(shè)直線l的方程為y=kx+m,
即kx-y+m=0,設(shè)A(x1,y1),B(x2,y2),
∵直線l與圓M相切,∴
|m|
k2+1
=R,即m2=R2(k2+1),①
聯(lián)立
y=kx+m
x2
2
+y2=1
,得(1+2k2)x2+4kmx+2m2-2=0,
由直線l與橢圓G相切,得△=16k2m2-4(1+2k2)(2m2-2)=0,
即m2=2k2+1,②
由①②得k2=
R2-1
2-R2
,m2=
3R2
2-R2
,
設(shè)點(diǎn)B(x0,y0),則x02=
4m2-4
1+4k2
=
16R2-16
3R2

y02=1-
x02
4
=
4-R2
3R2

∴|OB|2=x02+y02=
15R2-12
3R2
=5-
4
R2
,
∴|AB|2=|OB|2-|OA|2=5-
4
R2
-R2

=5-(R2+
4
R2
)≤5-2
R2
4
R2
=1,
當(dāng)且僅當(dāng)R2=
4
R2
,即R=
2
時(shí)取“=”號(hào),
∴當(dāng)R=
2
時(shí),|AB|取得最大值1.
點(diǎn)評(píng):本題考橢圓C的方程的法語(yǔ)法,考查|AB|的最大值的求法,是中檔值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若A={x∈R|2x≤8},B={x∈R|log2x>1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作出函數(shù)y=|3x-1|的圖象,并利用數(shù)形結(jié)合的方法研究方程|3x-1|=k的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是菱形,PA⊥ABCD,AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)當(dāng)二面角A-PC-B的余弦值為
21
7
時(shí),求直線PB與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,1),B(-1,0),C(0,1),求點(diǎn)D(x,y),使
AB
=
CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4.E是PD的中點(diǎn),
(1)求二面角E-AC-D的余弦值;
(2)求CD與平面ACE所成角的正弦值;
(3)求VD-ACE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn) M(
p
2
,0)的直線 l與拋物線 y2=2px(p>0)交于A,B兩點(diǎn),且 
OA
OB
=-3,其中O為坐標(biāo)原點(diǎn).
(1)求p的值;
(2)若圓x2+y2-2x=0與直線l相交于以C,D(A,C兩點(diǎn)均在第一象銀),且線段AC,CD,DB長(zhǎng)構(gòu)成等差數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB的兩個(gè)端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),|AB|=3,點(diǎn)M滿足2
AM
=
MB

(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的余弦值;
(Ⅲ)求點(diǎn)D到平面ACE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案