已知奇函數(shù)y=f(x),且f(x)=f(x+4),f(1)=2,則f(2)+f(3)+f(4)=
 
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)的周期,利用奇函數(shù)求出f(0)=0,求解表達(dá)式的值即可.
解答: 解:奇函數(shù)y=f(x),∴f(0)=0,
f(x)=f(x+4),所以函數(shù)的周期是4,f(4)=f(0)=0,
f(1)=2,
f(1)=-f(-1)=-f(3),f(3)=-2,
f(2)=f(-2)=-f(2),∴f(2)=0.
則f(2)+f(3)+f(4)=0-2+0=2.
故答案為:-2.
點(diǎn)評(píng):本題考查抽象函數(shù)的應(yīng)用,函數(shù)的奇偶性函數(shù)值的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(-6,8),求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一元二次方程x2+(1-2m)x+m2-m=0一根大于2,一根小于2,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(x+3)•|x-1|的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga
x+1
x-1
(a>0且a≠1)
(1)求f(x)的定義域.
(2)判斷函數(shù)的奇偶性和單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)f(x+1)=1對(duì)任意x∈R成立,且f(x)≠0,則f(x)是周期函數(shù),它的一個(gè)周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=nsin
2
+1,前n項(xiàng)和Sn,則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-(a+1)x+1,a∈R.
(1)當(dāng)a>0時(shí),求函數(shù)y=
f(x)
的定義域;
(2)若存在m>0使關(guān)于x的方程f(|x|)=m+
1
m
有四個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為4,焦距為2,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知雙曲線的漸近線方程為y=±
3
4
x,準(zhǔn)線方程為x=±
16
5
,求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案