(本小題滿分14分)已知橢圓C:的焦距為4,其長軸長和短軸長之比為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F為橢圓C的右焦點(diǎn),T為直線上縱坐標(biāo)不為0的任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(。┤鬙T平分線段PQ(其中O為坐標(biāo)原點(diǎn)),求的值;
(ⅱ)在(ⅰ)的條件下,當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
(Ⅰ);(Ⅱ)(ⅰ);(ⅱ)當(dāng)最小時(shí),T點(diǎn)的坐標(biāo)是(3,1)或(3,-1).
【解析】
試題分析:(Ⅰ)利用條件“焦距為4,其長軸長和短軸長之比為”列方程求出的值從而確定橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)(。┯桑á瘢┛傻,F(xiàn)點(diǎn)的坐標(biāo)是(2,0). 設(shè)直線PQ的方程為x=my+2,將直線PQ的方程與橢圓C的方程聯(lián)立,得消去得到關(guān)于的一元二次方程,于是可利用韋達(dá)定理與兩直線的位置關(guān)系確定的值.(ⅱ)由(。┲猅為直線上任意一點(diǎn)可得,點(diǎn)T點(diǎn)的坐標(biāo)為.利用兩點(diǎn)間的距離公式將表示成的函數(shù),最后利用函數(shù)或不等式的方法求出其取得最小值時(shí)的值,從而確定T點(diǎn)的縱坐標(biāo)..
試題解析:【解析】
(Ⅰ)由已知可得
解得a2=6,b2=2,
所以橢圓C的標(biāo)準(zhǔn)方程是. (4分)
(Ⅱ)(。┯桑á瘢┛傻,F(xiàn)點(diǎn)的坐標(biāo)為(2,0).
由題意知直線PQ的斜率存在且不為0,設(shè)直線PQ的方程為x=my+2.
將直線PQ的方程與橢圓C的方程聯(lián)立,得
消去x,得(m2+3)y2+4my-2=0,其判別式Δ=16m2+8(m2+3)>0.
設(shè)P(x1,y1),Q(x2,y2),則,.
于是.
設(shè)M為PQ的中點(diǎn),則M點(diǎn)的坐標(biāo)為.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015040806100474532996/SYS201504080610241679709671_DA/SYS201504080610241679709671_DA.020.png">,所以直線FT的斜率為,其方程為.
當(dāng)時(shí),,所以點(diǎn)的坐標(biāo)為,
此時(shí)直線OT的斜率為,其方程為.
將M點(diǎn)的坐標(biāo)為代入,
得.解得. (8分)
(ⅱ)由(ⅰ)知T點(diǎn)的坐標(biāo)為.
于是,
.
所以
.
當(dāng)且僅當(dāng),即時(shí),等號成立,此時(shí)取得最小值.
故當(dāng)最小時(shí),點(diǎn)的坐標(biāo)是或. (14分)
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、直線與橢圓的位置關(guān)系綜合問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省益陽市高二上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
直線與直線平行, 則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年廣東省等高一上學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
計(jì)算:=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省株洲市高三教學(xué)質(zhì)量統(tǒng)一檢測一理科數(shù)學(xué)試卷(解析版) 題型:填空題
關(guān)于x的不等式有解時(shí),d的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖南省株洲市高三教學(xué)質(zhì)量統(tǒng)一檢測一理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知非零向量,,則=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市武昌區(qū)高三元月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù),其中,,則函數(shù) 在上是增函數(shù)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市武昌區(qū)高三元月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的圖象如圖所示,若函數(shù)在區(qū)間上有10個(gè)零點(diǎn)(互不相同),則實(shí)數(shù)的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年湖北省武漢市武昌區(qū)高三元月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
過圓外一點(diǎn)P作圓的切線PA(A為切點(diǎn)),再作割線PBC依次交圓于B,C.若PA=6,AC=8,BC=9,則AB=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省福州市高三上學(xué)期期末質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)“ALS冰桶挑戰(zhàn)賽”是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的籌款活動(dòng),活動(dòng)規(guī)定:被邀請者要么在24小時(shí)內(nèi)接受挑戰(zhàn),要么選擇為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動(dòng).若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個(gè)人參與這項(xiàng)活動(dòng).假設(shè)每個(gè)人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
(Ⅰ)若某被邀請者接受挑戰(zhàn)后,對其他3個(gè)人發(fā)出邀請,則這3個(gè)人中至少有2個(gè)人接受挑戰(zhàn)的概率是多少?
(Ⅱ)假定(Ⅰ)中被邀請到的3個(gè)人中恰有兩人接受挑戰(zhàn).根據(jù)活動(dòng)規(guī)定,現(xiàn)記為接下來被邀請到的6個(gè)人中接受挑戰(zhàn)的人數(shù),求的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com