某商品每件成本5元,售價(jià)14元,每星期賣出75件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)m與商品單價(jià)的降低值x(單位:元,0≤x<9)的平方成正比,已知商品單價(jià)降低1元時(shí),一星期多賣出5件.
(1)將一星期的商品銷售利潤(rùn)y表示成x的函數(shù);
(2)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大?
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)依題意,設(shè)m=kx2,由已知有5=k•12,可求得k值,根據(jù)單件利潤(rùn)×銷售量可得函數(shù)式;
(2)利用導(dǎo)數(shù)即可求得函數(shù)的最大值,注意函數(shù)定義域;
解答: 解:(1)依題意,設(shè)m=kx2,由已知有5=k•12,從而k=5,
∴m=5x2,
∴y=(14-x-5)(75+5x2)=-5x3+45x2-75x+675(0≤x<9);
(2)∵y′=-15x2+90x-75=-15(x-1)(x-5),
由y′>0,得 1<x<5,由y′<0,得 0≤x<1或5<x<9,
可知函數(shù)y在[0,1)上遞減,在(1,5)遞增,在(5,9)上遞減,
從而函數(shù)y取得最大值的可能位置為x=0或是x=5,
∵y(0)=675,y(5)=800,
∴當(dāng)x=5時(shí),ymax=800,
答:商品每件定價(jià)為9元時(shí),可使一個(gè)星期的商品銷售利潤(rùn)最大.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)的最值、實(shí)際問(wèn)題中函數(shù)模型的構(gòu)建問(wèn)題,考查學(xué)生利用數(shù)學(xué)知識(shí)分析解決實(shí)際問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Ox,Oy為平面上兩條相交且不垂直的數(shù)軸,設(shè)∠xOy=θ,平面上任意一點(diǎn)P關(guān)于斜坐標(biāo)系的坐標(biāo)這樣定義:若
OP
=x
e1
+y
e2
(其中
e1
,
e2
分別是與x軸,y軸的正方向同向的單位向量),則
OP
的坐標(biāo)為(x,y),則在平面斜坐標(biāo)系下給出給出下列幾個(gè)運(yùn)算結(jié)論:
①若θ=
π
3
,P(1,1),則有|
OP
|=
2

②若P(x1,y1),Q(x2,y2),則有
OP
+
OQ
=(x1+x2,y1+y2)

③若P(x1,y1),Q(x2,y2),則有
OP
OQ
=(x1x2,y1y2)

④設(shè)∠xOy=
π
3
,點(diǎn)P在第二象限內(nèi),∠xOP=
6
且|OP|=3,則點(diǎn)P的坐標(biāo)為P(-2
3
,
3
)

其中正確的運(yùn)算結(jié)論是
 
(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x+2)是偶函數(shù),f(x+2)在[0,+∞)上為減函數(shù),則f(-1),f(0),f(3)的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|x|≤3},B={x|x2-x-2≤0},則“x∈A”是“x∈B”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ∈R,則“θ=
π
3
”是“cosθ=
1
2
”的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=Asin(ωx+ψ)(A>0,ψ>0,ψ的絕對(duì)值小于
π
2
)的圖象的一個(gè)最高點(diǎn)為(2,
2
),由這個(gè)最高點(diǎn)到相鄰最低點(diǎn)的圖象與x軸交于(6,0),試求這個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,c=
37
,b=3,a=4,求C,并求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):sin4α+sin2α•cos2α+cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為2的正三角形繞著它的一邊旋轉(zhuǎn)一周所形成的旋轉(zhuǎn)體的表面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案