已知曲線y=
1x
和y=x2
(1)求它們的交點;
(2)分別求它們在交點處的切線方程;
(3)求兩條切線與x軸所圍成的三角形面積.
分析:(1)聯(lián)立方程可得曲線y=
1
x
和y=x2在它們的交點坐標;
(2)求導數(shù),確定函數(shù)在(1,1)處的切線的斜率,從而可求切線方程;
(3)確定兩條切線與x軸所圍成的三角形三個頂點的坐標,即可求得兩條切線與x軸所圍成的三角形面積.
解答:解:(1)聯(lián)立方程可得
y=
1
x
y=x2
,解得x=1,y=1
∴曲線y=
1
x
和y=x2在它們的交點坐標是(1,1);…(2分)
(2)y=
1
x
的導函數(shù)為y′=-
1
x2
,∴在(1,1)處的切線的斜率為-1,
∴切線方程為y-1=-(x-1),即y=-x+2
y=x2的導函數(shù)為y=2x,∴在(1,1)處的切線的斜率為2,
∴切線方程為y-1=2(x-1),即y=2x-1,…(8分)
(3)兩條切線與x軸所圍成的三角形如圖所示,兩條切線與x軸的交點坐標分別為(2,0),(
1
2
,0),兩條切線交點是(1,1),
∴兩條切線與x軸所圍成的三角形面積是
3
4
.…(14分)
點評:本題考查曲線的切線方程,考查三角形面積的計算,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C:y=
1
x
,Cn:y=
1
x+2-n
(n∈N*)
.從C上的點Qn(xn,yn)作x軸的垂線,交Cn于點Pn,再從Pn作y軸的垂線,交C于點Qn+1(xn+1,yn+1).設x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求數(shù)列{an}的通項公式;
(III)設△PiQiQi+1(i∈N*)和面積為Si,記f(n)=
n
i=1
Si
,求證f(n)<
1
6
.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

加試題:已知曲線C:y=
1
x
(x>0)
,過P1(1,0)作y軸的平行線交曲線C于Q1,過Q1作曲線C的切線與x軸交于P2,過P2作與y軸平行的直線交曲線C于Q2,照此下去,得到點列P1,P2,…,和Q1,Q2,…,設|
PnQn
|=an
,
2
|
QnQn+1
|=bn(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)求證:b1+b2+…+bn>2n-2-n;
(3)求證:曲線C與它在點Qn處的切線,以及直線Pn+1Qn+1所圍成的平面圖形的面積與正整數(shù)n的值無關.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知曲線C:y=
1
x
在點P(1,1)處的切線與x軸交于點Q1,過點Q1作x軸的垂線交曲線C于點P1,曲線C在點P1處的切線與x軸交于點Q2,過點Q2作x軸的垂線交曲線C于點P2,…,依次得到一系列點P1、P2、…、Pn,設點Pn的坐標為(xn,yn)(n∈N*).
(Ⅰ)求數(shù)列{xn}的通項公式;
(Ⅱ)求三角形OPnPn+1的面積S△OPnPn+1
(Ⅲ)設直線OPn的斜率為kn,求數(shù)列{nkn}的前n項和Sn,并證明Sn
4
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知曲線C:y=
1
x
,Cny=
1
x+2-n
(n∈N*).從C上的點Qn(xn,yn)作x軸的垂線,交Cn于點Pn,再過點Pn作y軸的垂線,交C于點Qn+1(xn+1,yn+1)設,x1=1,an=xn+1-xn,bn=yn -yn+1
(1)求點Q1、Q2的坐標;
(2)求數(shù)列{an} 的通項公式;
(3)記數(shù)列{an•yn+1} 的前n項和為Sn,求證sn
1
3

查看答案和解析>>

同步練習冊答案