設(shè)集合M={x|y2=3x,x∈R},N={y|x2+y2=4,x∈R,y∈R},則M∩N等于(  )
A、{
3
,-
3
}
B、[-2,2]
C、{(1,
3
),(1,-
3
)}
D、[0,2]
考點(diǎn):交集及其運(yùn)算
專(zhuān)題:集合
分析:求出M中x的范圍確定出M,求出N中y的范圍確定出N,找出兩集合的交集即可.
解答: 解:由M中y2=3x≥0,得到x≥0,即M=[0,+∞),
由N中x2+y2=4,得到-2≤y≤2,即N=[-2,2],
則M∩N=[0,2].
故選:D.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+1
2x-1

(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程2x-x=0解的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1-3x)5的展開(kāi)式中x3的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(a,b)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)為P′(b+1,a-1),則圓C:x2+y2-6x-2y=0關(guān)于直線L對(duì)稱(chēng)的圓C′的方程為( 。
A、(x-2)2+(y-2)2=10
B、(x-2)2-(y-2)2=10
C、(x-2)2+(y+2)2=10
D、(x+2)2+(y-2)2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí),f(x)=2x.若對(duì)任意的x∈[t,t+2],不等式f(x+t)≥f2(x)恒成立,則實(shí)數(shù)t的取值范圍是( 。
A、(-∞,-2]
B、(0,2]
C、(-∞,-
3
2
]
D、[-
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=
2+i
1+i
,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2.點(diǎn)P(a,b)滿足|PF2|=|F1F2|.求橢圓的離心率e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=a,an+1=1+
1
an
.若
3
2
<an<2(n≥4),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案