如圖,拋物線的頂點為坐標(biāo)原點,焦點在軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點,命題P:“若直線過定點,則”,請判斷命題P的真假,并證明。
(Ⅰ) (Ⅱ)命題P為真命題
【解析】
試題分析:(Ⅰ)依題意,可設(shè)拋物線的方程為,
其準(zhǔn)線的方程為.
∵準(zhǔn)線與圓相切,
∴所以圓心到直線的距離,解得.
故拋物線的方程為:.
(Ⅱ)命題P為真命題
因為直線和拋物線交于點且過定點,所以直線的斜率一定存在
設(shè)直線,交點聯(lián)立拋物線的方程,
得 恒成立
由韋達(dá)定理得
,所以命題P為真命題
考點:直線與圓錐曲線的綜合問題;恒過定點的直線;拋物線的標(biāo)準(zhǔn)方程.
點評:本題考查了拋物線方程的求法,以及直線與拋物線的位置關(guān)系判斷,做題時要認(rèn)真分析,避免不必要的錯誤.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)如圖,拋物線的頂點在坐標(biāo)原點,且開口向右,點A,B,C在拋物線上,△ABC的重心F為拋物線的焦點,直線AB的方程為.(Ⅰ)求拋物線的方程;(Ⅱ)設(shè)點M為某定點,過點M的動直線l與拋物線相交于P,Q兩點,試推斷是否存在定點M,使得以線段PQ為直徑的圓經(jīng)過坐標(biāo)原點?若存在,求點M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,拋物線的頂點在坐標(biāo)原點,且開口向右,點A,B,C在拋物線上,△ABC的重心F為拋物線的焦點,直線AB的方程為。
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點M為某定點,過點M的動直線l與拋物線相交于P,Q兩點,試推斷是否存在定點M,使得以線段PQ為直徑的圓經(jīng)過坐標(biāo)原點?若存在,求點M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州市高三畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,拋物線的頂點為坐標(biāo)原點,焦點在軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點在拋物線上,且,求點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com