如圖,斜率為1的直線l過拋物線Ω:y2=2px(p>0)的焦點F,與拋物線交于兩點A,B.

(1)若|AB|=8,求拋物線Ω的方程;

(2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求△ABC的面積S的最大值;

(3)設(shè)P是拋物線Ω上異于A,B的任意一點,直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點,證明M,N兩點的縱坐標(biāo)之積為定值(僅與p有關(guān))

答案:
解析:

  解:設(shè)A(x1,y1),B(x2,y2),

  (1)由條件知直線

  由消去y,得  1分

  由題意,判別式(不寫,不扣分)

  由韋達(dá)定理,

  由拋物線的定義,

  從而4p=8,2p=4所求拋物的方程為y2=4x  3分

  (2)設(shè).由(1)易求得

  則  4分

  點C到直線的距離

  將原點O(0,0)的坐標(biāo)代入直線的左邊,

  得

  而點C與原點O們于直線的同側(cè),由線性規(guī)劃的知識知

  因此  6分

  由(1),|AB|=4p.

  

  

  由

  知當(dāng)y0=p時,  8分

  (3)由(2),易得

  設(shè)

  將代入直線PA的方程

  得

  同理直線PB的方程為

  將代入直線PA,PB的方程得

    10分

  

  

  

    12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,M為拋物線弧AB上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求S△ABM的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,斜率為1的直線過拋物線Ω:y2=2px(p>0)的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線Ω的方程;
(2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求△ABC的面積S的最大值;
(3)設(shè)P是拋物線Ω上異于A,B的任意一點,直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點,證明M,N兩點的縱坐標(biāo)之積為定值(僅與p有關(guān))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,將直線AB按向量
a
=(-p,0)
平移得到直線l,N為l上的動點,M為拋物線弧AB上的動點.
(Ⅰ) 若|AB|=8,求拋物線方程.
(Ⅱ)求S△ABM的最大值.
(Ⅲ)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,將直線AB按向量
a
=(-p,0)
平移到直線l,N為l上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省棗莊市2010屆高三年級調(diào)研考試數(shù)學(xué)(文科)試題 題型:解答題

(本題滿分12分)

如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點AB

   (1)若|AB|=8,求拋物線的方程;

   (2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;

   (3)設(shè)P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準(zhǔn)線于MN兩點,證明M,N兩點的縱坐標(biāo)之積為定值(僅與p有關(guān))

 

查看答案和解析>>

同步練習(xí)冊答案