f(x)=
x+3
x
 
(1)寫出此函數(shù)的定義域和值域
(2)證明函數(shù)在(0,+∞)為單調(diào)遞減函數(shù).
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求定義域就是使函數(shù)有意義,所以定義域很容易求出,原函數(shù)變成f(x)=1+
1
x
,
1
x
≠0,所以f(x)≠1,所以值域也能求出.
(2)可以利用導(dǎo)數(shù)證明原函數(shù)在(0,+∞)上的單調(diào)性.
解答: 解:(1)要使函數(shù)f(x)=
x+3
x
=1+
3
x
有意義,則x≠0,∵
3
x
≠0
,∴f(x)≠1;
∴函數(shù)f(x)的定義域是:{x|x≠0},值域是:(-∞,1)∪(1,+∞).
(2)f′(x)=-
3
x2
<0,∴函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
點(diǎn)評(píng):本題考查定義域、值域的概念,以及函數(shù)導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系.利用導(dǎo)數(shù)證明或判斷函數(shù)單調(diào)性時(shí),需正確求出導(dǎo)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且角A,B,C成等差數(shù)列
(1)若a=2c=2,求b的值;
(2)若△ABC的面積為
3
,且b=2,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p≠0,數(shù)列{an}滿足:a1=2,an+1=pan+1-p(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=2-qn-1(n∈N*),當(dāng)n≥2時(shí),p,q都在區(qū)間(0,1)內(nèi)變化,且滿足p2n-2+q2n-2≤1時(shí),求所有點(diǎn)(an,bn)所構(gòu)成圖形的面積;
(3)當(dāng)p>1時(shí),證明:
n
p
a1
a2
+
a2
a3
+…+
an
an+1
n+1
p
(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:x2-2x-3<0;q:m<x<m+6,
(1)求不等式x2-2x-3<0的解集;
(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在股票市場上,投資者常參考股價(jià)(每一股的價(jià)格)的某條平滑均線的變化情況來決定買入或賣出股票.股民老張?jiān)谘芯抗善钡淖邉輬D時(shí),發(fā)現(xiàn)一只股票的均線近期走得很有特點(diǎn):如果按如圖所示的方式建立平面直角坐標(biāo)系xoy,則股價(jià)y(元)和時(shí)間x的關(guān)系在ABC段可近似地用解析式y(tǒng)=asin(ωx+φ)+b(0<φ<π)來描述,從C點(diǎn)走到今天的D點(diǎn),是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標(biāo)志,且D點(diǎn)和C點(diǎn)正好關(guān)于直線l:x=34對(duì)稱.老張預(yù)計(jì)這只股票未來的走勢如圖中虛線所示,這里DE段與ABC段關(guān)于直線l對(duì)稱,EF段是股價(jià)延續(xù)DE段的趨勢(規(guī)律)走到這波上升行情的最高點(diǎn)F.現(xiàn)在老張決定取點(diǎn)A(0,22),點(diǎn)B(12,19),點(diǎn)D(44,16)來確定解析式中的常數(shù)a,b,ω,φ,并且求得ω=
π
72

(1)請(qǐng)你幫老張算出a,b,φ,并回答股價(jià)什么時(shí)候見頂(即求F點(diǎn)的橫坐標(biāo))
(2)老張如能在今天以D點(diǎn)處的價(jià)格買入該股票3000股,到見頂處F點(diǎn)的價(jià)格全部賣出,不計(jì)其它費(fèi)用,這次操作他能賺多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=cos(2x-
π
6
)圖象的一條對(duì)稱軸是x=
12

②在同一坐標(biāo)系中,函數(shù)y=sinx與y=lgx的交點(diǎn)個(gè)數(shù)為3個(gè);
③將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位長度可得到函數(shù)y=sin2x的圖象;
④存在實(shí)數(shù)x,使得等式sinx+cosx=
3
2
成立;
其中正確的命題為
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B=45°,AC=
10
,cosC=
2
5
5

(Ⅰ)求sinA的值和邊AB的長;
(Ⅱ)設(shè)AB的中點(diǎn)為D,求中線CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若過拋物線y2=4x焦點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),O為原點(diǎn),且∠AOB=120°,則△AOB的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α=cos420°,函數(shù)f(x)=
ax, x<0
logax , x≥0
,則f(
1
4
)+f(log2
1
6
)的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案