分析 (1)由$\overrightarrow{AB}$•$\overrightarrow{AC}$=3$\overrightarrow{BA}$•$\overrightarrow{BC}$,得sinBcosA=3sinAcosB,tanB=3tanA.
⇒tanA=1即可
(2)由(1)知sinB•cosA=3sinA•cosB,得c2=2b2-2a2,又由余弦定理得b、c,即可求得面積.
解答 解:(1)∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=3$\overrightarrow{BA}$•$\overrightarrow{BC}$,∴AB•ACcosA=3BA•BCcosB
即AC•cosA=3cosB•BC
由正弦定理得$\frac{AC}{sinB}=\frac{BC}{sinA}$,∴sinBcosA=3sinAcosB
又∵0<A+B<π,∴cosA>0,cosB>0,∴$\frac{sinB}{cosB}=3×\frac{sinA}{cosA}$,⇒tanB=3tanA.
∵cosC=$\frac{\sqrt{5}}{5}$,0<C<π,∴$sinC=\frac{2\sqrt{5}}{5}$,tanC=2.
∵tanC=tan[π-(A+B)]=-tan(A+B)=-$\frac{tanA+tanB}{1-tanA•tanB}$
⇒$\frac{4tanA}{1-3ta{n}^{2}A}=-2$⇒tanA=1,或tanA=-$\frac{1}{3}$
∵tanB=3tanA,∴tanA>0,∴$tanA=1,A=\frac{π}{4}$
(2)由(1)知sinB•cosA=3sinA•cosB,
⇒$b•\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}=3a•\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
∴c2=2b2-2a2,
又由余弦定理得,${a}^{2}=^{2}+{c}^{2}-2bc•cos\frac{π}{3}$.∴b=6,
∴${s}_{△ABC}=\frac{1}{2}bcsinA=\frac{1}{2}×6×4×\frac{\sqrt{3}}{2}=6\sqrt{3}$.
點(diǎn)評 本題考查了正、余弦定理的應(yīng)用,三角恒等變形,考查了計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60 | B. | 120 | C. | 150 | D. | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{FD}$+$\overrightarrow{DA}$+$\overrightarrow{DE}$=0 | B. | $\overrightarrow{AD}$+$\overrightarrow{BE}$+$\overrightarrow{CF}$=0 | C. | $\overrightarrow{FD}$+$\overrightarrow{DE}$+$\overrightarrow{AD}$=$\overrightarrow{AB}$ | D. | $\overrightarrow{AD}$+$\overrightarrow{EC}$+$\overrightarrow{FD}$=$\overrightarrow{BD}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com