記實數(shù)x1,x2,…,xn中的最大數(shù)為max{x1,x2,…,xn},最小數(shù)為min{x1,x2,…,xn}.已知△ABC的三邊長為a,b,c(a≤b≤c),定義它的傾斜度為△ABC的l,且l=max{
a
b
b
c
,
c
a
}•min{
a
b
,
b
c
,
c
a
}則“l(fā)=1”是“△ABC為等邊三角形”( 。
A、必要而不充分的條件
B、充分而不必要的條件
C、充要條件
D、既不充分也不必要的條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)傾斜度的定義以及充分條件和必要條件的定義進行判斷即可.
解答: 解:若△ABC為等邊三角形時,即a=b=c,
則max{
a
b
b
c
,
c
a
}=1,則l=1;
若△ABC為等腰三角形,如a=2,b=2,c=3時,
則max{
a
b
,
b
c
c
a
}=
a
b
=1,
此時l=1仍成立,但△ABC不為等邊三角形,
∴“l(fā)=1”是“△ABC為等邊三角形”的必要而不充分的條件.
故選:A
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)斜度的定義是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)定義域為R的函數(shù)f(x),g(x)都有反函數(shù),并且f(x-1)和g-1(2x-2)函數(shù)的圖象關(guān)于直線y=x對稱,若g(2)=2008,則f(1)的值為( 。
A、1005B、2008
C、1003D、以上結(jié)果均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=2cosx(
3
sinx+cosx)的一條對稱軸為(  )
A、x=
π
3
B、x=-
π
3
C、x=-
π
2
D、x=
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanθ=-
2
2
,求
2cos2
θ
2
-sinθ-1
2
sin(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:“正方形的四邊相等”,則非p是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,若
OB
=a10
OA
+a11
OC
,且A、B、C三點共線(該直線不過點O),則S20=( 。
A、10B、11C、20D、21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用“∈”或“∉”填空
(1)
2
+
5
 
{x|x≤2+
3
}

(2)
2-
3
+
2+
3
 
{x|x=a+
6
b,a∈Q,b∈Q}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={x||x|=x},B={x|x2+x≥0},則A∩B=( 。
A、[-1,0]
B、[0,+∞)
C、[1,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

410°屬于第( 。┫笙藿牵
A、ⅠB、ⅡC、ⅢD、Ⅳ

查看答案和解析>>

同步練習冊答案