給出下列四個(gè)命題:
①垂直于同一平面的兩條直線(xiàn)相互平行;
②垂直于同一平面的兩個(gè)平面相互平行;
③若一個(gè)平面內(nèi)有無(wú)數(shù)條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
④若一條直線(xiàn)垂直于一個(gè)平面內(nèi)的任一直線(xiàn),那么這條直線(xiàn)垂直于這個(gè)平面.
其中真命題的個(gè)數(shù)是


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
B
分析:對(duì)于①和④,一條直線(xiàn)垂直于一個(gè)平面內(nèi)的任一直線(xiàn),那么這條直線(xiàn)垂直于這個(gè)平面判斷即可,對(duì)與②和③舉出錯(cuò)誤反例即可.
解答:命題④為線(xiàn)面垂直的定義,所以真;
  命題①利用反證法,因?yàn)榭梢杂浿本(xiàn)a⊥α,b⊥α,有線(xiàn)面垂直定義知道a,b垂直于平面內(nèi)的一切直線(xiàn),若兩直線(xiàn)不平行那就不可能與同一個(gè)平面內(nèi)的所有直線(xiàn)都成90° 的角,所以④正確;
對(duì)與②舉出房屋的一角所對(duì)的三個(gè)平面就符合②的條件但結(jié)論錯(cuò)誤;
對(duì)與③畫(huà)出符合條件的反例圖形為:

有圖顯然平面α內(nèi)有無(wú)數(shù)條直線(xiàn)都與β平面平行但α與β相交,故③錯(cuò)誤.
故選B
點(diǎn)評(píng):此題考查了學(xué)生的空間想象能力及線(xiàn)面垂直的定義,還考查了學(xué)生對(duì)與立體幾何命題的正誤判斷時(shí)舉出合適的反例,這一解題策略.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知a、b是兩條不重合的直線(xiàn),α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號(hào)有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號(hào)是
③④⑤
③④⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為2,銳角為60°的菱形ABCD沿較短對(duì)角線(xiàn)BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
①EF∥AB;②直線(xiàn)EF是異面直線(xiàn)AC與BD的公垂線(xiàn);③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號(hào)全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為(  )
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對(duì)稱(chēng)中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案