已知向量
a
=(x+2,3),
b
=(x,1),當(dāng)f(x)=
a
b
取得最小值時(shí),x=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量的數(shù)量積的坐標(biāo)運(yùn)算得到關(guān)于x的二次函數(shù)解析式,求取最小值時(shí)的x.
解答: 解:由已知f(x)=
a
b
=(x+2)x+3=x2+2x+3=(x+1)2+2,
所以x=-1時(shí),f(x)=
a
b
取得最小值為2;
故答案為:2.
點(diǎn)評(píng):本題考查了向量的數(shù)量積的坐標(biāo)運(yùn)算以及二次函數(shù)求最值;屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),當(dāng)x∈[-1,0]時(shí),函數(shù)的解析式為f(x)=
1
4x
-
a
2x
(a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[-1,0]上的最大值.
(3)對(duì)任意的x1,x2∈[-1,1]都有|f(x1)-f(x2)|≤M成立,求最小的整數(shù)M的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}前四項(xiàng)之和為21,后四項(xiàng)之和為67,前幾項(xiàng)和Sn=121,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={1,2,3,4,5},集合A={2,2,3},B={2,4},則(∁UA)∪B為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-x
的定義域?yàn)椋ā 。?/div>
A、{x|x≤1}
B、{x|x<1}
C、{x|x≥1}
D、{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:設(shè)ξ是隨機(jī)變量,ξ=η12+…+ηn,ηi(i=1,2,…,n)都是存在數(shù)學(xué)期望的隨機(jī)變量,那么Eξ=E η1+E η2+…+E ηn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某樹苗培育基地為了解其基地內(nèi)榕樹樹苗的長(zhǎng)勢(shì)情況,隨機(jī)抽取了100株樹苗,分別測(cè)出它們的高度(單位:cm),并將所得數(shù)據(jù)分組,畫出頻率分布表如下:
組 距頻 數(shù)頻 率
[100,102)170.17
[102,104)180.18
[104,106)240.24
[106,108)ab
[108,110)60.06
[110,112)30.03
合計(jì)1001
(1)求上表中a、b的值;
(2)估計(jì)該基地榕樹樹苗平均高度;
(3)基地從上述100株榕樹苗中高度在[108,112)范圍內(nèi)的樹苗中隨機(jī)選出5株進(jìn)行育種研究,其中在[110,112)內(nèi)的有X株,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=1時(shí),求不等式f(x)≥5的解集;
(2)若f(x)≤|x-4|的解集A滿足[1,2]⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax2+x+b,若f(-1)=2,求實(shí)數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案