證明:(1)連接AC,因底面ABCD為菱形,故AC⊥BD.
∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD.
又AC⊥BD,故BD⊥面PAC.∵PC?平面PAC,∴PC⊥BD.
(2)取PC的中點(diǎn)K,連接FK、EK.
則FK∥CD,.
又AE∥CD,,
則四邊形AEKF是平行四邊形,∴AF∥EK.
又EK?平面PEC,AF?平面PEC,∴AF∥平面PEC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,四棱錐的底面為正方形,側(cè)棱底面,且,分別是線段的中點(diǎn).
(Ⅰ)求證://平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南長沙重點(diǎn)中學(xué)高三上學(xué)期第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,四棱錐的底面為矩形,且,,,,
(Ⅰ)平面PAD與平面PAB是否垂直?并說明理由;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期期末試題理科數(shù)學(xué) 題型:解答題
如圖,四棱錐的底面為矩形,且,,,
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省六校聯(lián)合體高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面,,、分別為、的中點(diǎn)。
(I)求證:平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求平面與平面所成的銳二面角大小的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com