5、已知數(shù)列{an}的通項公式是an=2n+5,則此數(shù)列是( 。
分析:直接根據(jù)數(shù)列{an}的通項公式是an=2n+5求出首項,再把相鄰兩項作差求出公差即可得出結論.
解答:解:因為an=2n+5,
所以  a1=2×1+5=7;
an+1-an=2(n+1)+5-(2n+5)=2.
故此數(shù)列是以7為首項,公差為2的等差數(shù)列.
故選A.
點評:本題主要考查等差數(shù)列的通項公式的應用.如果已知數(shù)列的通項公式,可以求出數(shù)列中的任意一項.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項為an=2n-1,Sn為數(shù)列{an}的前n項和,令bn=
1
Sn+n
,則數(shù)列{bn}的前n項和的取值范圍為(  )
A、[
1
2
,1)
B、(
1
2
,1)
C、[
1
2
3
4
)
D、[
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式是an=
an
bn+1
,其中a、b均為正常數(shù),那么數(shù)列{an}的單調(diào)性為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2003•東城區(qū)二模)已知數(shù)列{an}的通項公式是 an=
na
(n+1)b
,其中a、b均為正常數(shù),那么 an與 an+1的大小關系是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=2n-5,則|a1|+|a2|+…+|a10|=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式為an=
1
n+1
+
n
求它的前n項的和.

查看答案和解析>>

同步練習冊答案