精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,已知B=45°,D是BC上一點,AD=5,AC=7,DC=3,求AB的長.

【答案】解:法一:在△ADC中,由余弦定理得: ∵∠ADC∈(0,π),∴∠ADC=120°,
∴∠ADB=180°﹣∠ADC=60°
在△ABD中,由正弦定理得:
法二:在△ADC中,由余弦定理得
∵∠ACD∈(0,π),∴
在△ABC中,由正弦定理得:
故答案為:
【解析】法一:先在△ADC中用余弦定理求出∠ADC的余弦值,進而求出∠ADC,再根據互補求出∠ADB,然后在△ABD中用正弦定理就可求出AB的長; 法二:先在△ADC中用余弦定理求出∠ACD的余弦值,在根據同角三角函數關系求出∠ACD的正弦,然后在△ABC中用正弦定理就可求出AB的長.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2+c2=b2﹣ac.
(1)求B的大小;
(2)設∠BAC的平分線AD交BC于D,AD=2 ,BD=1,求cosC的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】點O是平面上一定點,A、B、C是平面上△ABC的三個頂點,∠B、∠C分別是邊AC、AB的對角,以下命題正確的是(把你認為正確的序號全部寫上). ①動點P滿足 = + + ,則△ABC的重心一定在滿足條件的P點集合中;
②動點P滿足 = +λ( + )(λ>0),則△ABC的內心一定在滿足條件的P點集合中;
③動點P滿足 = +λ( + )(λ>0),則△ABC的重心一定在滿足條件的P點集合中;
④動點P滿足 = +λ( + )(λ>0),則△ABC的垂心一定在滿足條件的P點集合中;
⑤動點P滿足 = +λ( + )(λ>0),則△ABC的外心一定在滿足條件的P點集合中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知圓M的圓心在直線y=﹣2x上,且圓M與直線x+y﹣1=0相切于點P(2,﹣1).
(1)求圓M的方程;
(2)過坐標原點O的直線l被圓M截得的弦長為 ,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 =({cosx,﹣ cosx), =(cosx,sinx),函數f(x)= +1. (Ⅰ)求函數f(x)的單調遞增區(qū)間;
(Ⅱ)若f(θ)= , 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了考查培育的某種植物的生長情況,從試驗田中隨機抽取100柱該植物進行檢測,得到該植物高度的頻數分布表如下:

組序

高度區(qū)間

頻數

頻率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合計

100

1.00

(Ⅰ)寫出表中①②③④處的數據;
(Ⅱ)用分層抽樣法從第3、4、5組中抽取一個容量為6的樣本,則各組應分別抽取多少個個體?
(Ⅲ)在(Ⅱ)的前提下,從抽出的容量為6的樣本中隨機選取兩個個體進行進一步分析,求這兩個個體中至少有一個來自第3組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn , 已知S2=4,an+1=2Sn+1,n∈N*
(1)求通項公式an;
(2)求數列{|an﹣n﹣2|}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=﹣2,an+1=2an+4.
(1)證明數列{an+4}是等比數列并求出{an}通項公式;
(2)若 ,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校有學生2000人,其中高二學生630人,高三學生720人.為了解學生的身體素質情況,采用按年級分層抽樣的方法,從該校學生中抽取一個200人的樣本.則樣本中高一學生的人數為

查看答案和解析>>

同步練習冊答案