(本小題12分)已知函數(shù)   (I)求函數(shù)的 單調(diào)區(qū)間,并比較的大。   (II)證明的大小。

(Ⅰ)    (Ⅱ)


解析:

:(I)易知  …2分 上遞增。上遞減。    又, 

   即…5分

   (II)要證明,  只需證上恒成立。

    令

    則函數(shù)處有極大值(也是最大值),

    成立。…8分

    由此可得………9分

    于是

   

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題12分)已知,,直線與函數(shù)、的k*s#5^u圖象都相切,且與函數(shù)的k*s#5^u圖象的k*s#5^u切點的k*s#5^u橫坐標為.

(Ⅰ)求直線的k*s#5^u方程及的k*s#5^u值;

(Ⅱ)若(其中的k*s#5^u導(dǎo)函數(shù)),求函數(shù)的k*s#5^u最大值;

(Ⅲ)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省瀘縣二中高2013屆春期重點班第一學月考試數(shù)學試題 題型:解答題

(本小題12分)已知等比數(shù)列中,。
(1)求數(shù)列的通項公式;
(2)設(shè)等差數(shù)列中,,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源:2011云南省潞西市高二上學期期末考試數(shù)學試卷 題型:解答題

(本小題12分)

已知頂點在原點,焦點在軸上的拋物線與直線交于P、Q兩點,|PQ|=,求拋物線的方程

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省杭州市七校高二上學期期中考試數(shù)學文卷 題型:解答題

(本小題12分)

已知圓C:;

(1)若直線且與圓C相切,求直線的方程.

(2)是否存在斜率為1直線,使直線被圓C截得弦AB,以AB為直徑的圓經(jīng)過原點O. 若存在,求

    出直線的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆山東省兗州市高二下學期期末考試數(shù)學(文) 題型:解答題

(本小題12分)已知函數(shù)

(1)       求這個函數(shù)的導(dǎo)數(shù);

(2)       求這個函數(shù)的圖像在點處的切線方程。

 

查看答案和解析>>

同步練習冊答案