分析:(Ⅰ)依題意,S
n=
an2+
a
n①,S
n+1=
an+12+
a
n+1②,由②-①可求得a
n+1-a
n=2.易求a
1=2,從而可知正項(xiàng)數(shù)列{a
n}是以2為首項(xiàng),2為公差的等差數(shù)列,可求其的通項(xiàng)公式;
(Ⅱ)利用裂項(xiàng)法可求得b
n=
(
-
),從而可求得數(shù)列{b
n}的前n項(xiàng)和為T
n.
解答:解:(Ⅰ)∵S
n=
an2+
a
n,①
∴S
n+1=
an+12+
a
n+1,②
②-①得:a
n+1=
(
an+12-
an2)+
(a
n+1-a
n),
∴
(
an+12-
an2)=
(a
n+1+a
n),
∵a
n>0,
∴a
n+1-a
n=2.
又a
1=
a12+
a
1,
∴a
1=2,
∴正項(xiàng)數(shù)列{a
n}是以2為首項(xiàng),2為公差的等差數(shù)列,
∴a
n=2+(n-1)×2=2n.
(Ⅱ)∵a
n=2n,
∴b
n=
=
=
(
-
),
∴T
n=b
1+b
2+…+b
n=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
點(diǎn)評:本題考查數(shù)列的求和,考查等差數(shù)列的判定及其通項(xiàng)公式,突出考查裂項(xiàng)法求和,屬于中檔題.