14、若關(guān)于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,3)內(nèi),記點(diǎn)(a,b)對應(yīng)的區(qū)域為S.設(shè)z=2a-b,則z的取值范圍
(-11,-2)
分析:令f(x)=x2+ax+b,根據(jù)題意可知f(0)>0,f(1)<0,f(3)>0,進(jìn)而求得b>0,a+b+1<0,a+b+9>0,畫出可行域,進(jìn)而分別求得z的最大和最小值,答案可得.
解答:解:設(shè)f(x)=x2+ax+b由函數(shù)圖象可知:f(0)>0,
f(1)<0,f(3)>0三者同時成立,
求解得b>0,a+b+1<0,3a+b+9>0,
由線性規(guī)劃的知識畫出可行域:以a為橫軸,b縱軸,
再以z=2a-b為目標(biāo),
當(dāng)a=-1,b=0時,zmax=-2 當(dāng)a=-4,b=3時,
zmin=-11 由題目,不能取邊界,
∴z∈(-11,-2)
故答案為:(-11,-2)
點(diǎn)評:本題主要考查了一元二次方程根據(jù)的分布,以及線性規(guī)劃的基本知識.考查了學(xué)生對基礎(chǔ)知識的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=-
a2
3
x3+
a
2
x2+cx(a≠0)

(I)當(dāng)a=1時,若函數(shù)g(x)在區(qū)間(-1,1)上是增函數(shù),求實數(shù)c的取值范圍;
(II)當(dāng)a≥
1
2
時,(1)求證:對任意的x∈[0,1],g′(x)≤1的充要條件是c≤
3
4
;
(2)若關(guān)于x的實系數(shù)方程g′(x)=0有兩個實根α,β,求證:|α|≤1,且|β|≤1的充要條件是-
1
4
≤c≤a2-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•黃岡模擬)若關(guān)于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,3)內(nèi),記點(diǎn)(a,b)對應(yīng)的區(qū)域為S.
(1)設(shè)z=2a-b,求z的取值范圍;
(2)過點(diǎn)(-5,1)的一束光線,射到x軸被反射后經(jīng)過區(qū)域S,求反射光線所在直線l經(jīng)過區(qū)域S內(nèi)的整點(diǎn)(即橫縱坐標(biāo)為整數(shù)的點(diǎn))時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:填空題

若關(guān)于x的實系數(shù)方程有兩個根,一個根在區(qū)間內(nèi),另一根在區(qū)間內(nèi),記點(diǎn)對應(yīng)的區(qū)域為S。那么區(qū)域S的面積是_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:填空題

若關(guān)于x的實系數(shù)方程有兩個根,一個根在區(qū)間內(nèi),另一根在區(qū)間內(nèi),記點(diǎn)對應(yīng)的區(qū)域為S。那么區(qū)域S的面積是_______.

 

查看答案和解析>>

同步練習(xí)冊答案