18.執(zhí)行如圖程序框圖,若輸入的t∈[-1,2],則輸出S屬于( 。
A.[0,1]B.$[{\frac{3}{4},\sqrt{2}}]$C.$[0,\sqrt{2})$D.$[1,\sqrt{2})$

分析 根據(jù)流程圖所示的順序知:該程序的作用是計算一個分段函數(shù)的函數(shù)值,由條件t的取值范圍得分段函數(shù)的分類標準,由分支結(jié)構(gòu)中是否兩條分支上對應(yīng)的語句行,易得函數(shù)的解析式,從而得解.

解答 解:模擬執(zhí)行程序,可得程序框圖的功能是計算并輸出S=$\left\{\begin{array}{l}{{2}^{t},t<\frac{1}{2}}\\{2t{-t}^{2},t≥\frac{1}{2}}\end{array}\right.$的值,
由題意可得:當t∈[-1,$\frac{1}{2}$)時,S=2t∈[$\frac{1}{2}$,$\sqrt{2}$),
當t∈[$\frac{1}{2}$,2]時,S=2t-t2∈[0,1],
所以0≤s<$\sqrt{2}$,
即輸出的s∈[0,$\sqrt{2}$).
故選:C.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)分析程序中各變量、各語句的作用,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn=2n2-3n-10.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:?x∈I,x3-x2+1≤0,則¬p是( 。
A.?x∈I,x3-x2+1>0B.?x∉I,x3-x2+1>0C.?x∈I,x3-x2+1>0D.?x∉I,x3-x2+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.數(shù)列{an}的前n項和為Sn,且Sn=2an+2,則a10=( 。
A.-1024B.1024C.1023D.-1023

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),則a2016的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{1}{{{x^2}+1}}$,g(x)=log2x,若有f(a)=g(b),則b的取值范圍是( 。
A.(0,2]B.(1,2]C.[1,2]D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在等差數(shù)列{an}中,a3+a7=38,則a2+a4+a6+a8=76.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=-x3+bx+a在x=1處的切線斜率為0,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若方程f(x)=0只有一個實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.平面α截球O所得截面的面積為4π,球心O到截面的距離為$\sqrt{2}$,此球的體積為( 。
A.$\sqrt{6}$πB.4$\sqrt{3}$πC.8$\sqrt{6}$πD.12$\sqrt{3}$π

查看答案和解析>>

同步練習(xí)冊答案