已知函數(shù)的定義域為,當時,,且對于任意的,恒有成立.

(1)求;

(2)證明:函數(shù)上單調(diào)遞增;

(3)當時,

①解不等式;

②求函數(shù)上的值域.

 

【答案】

(1)  (2) 設(shè),則 ∴函數(shù)上單調(diào)遞增(3) ①

【解析】

試題分析:(1)∵對于任意的恒有成立.

∴令,得:2分

(2)設(shè),則      4分

7分

∴函數(shù)上單調(diào)遞增             8分

(3)①∵對于任意的恒有成立.

     

又∵,

等價于,    10分

解得:    12分

∴所求不等式的解集為

由①得:

由(2)得:函數(shù)上單調(diào)遞增

故函數(shù)上單調(diào)遞增      13分

,  15分

∴函數(shù)上的值域為   16分

考點:抽象函數(shù)單調(diào)性及值域

點評:第一問抽象函數(shù)求值關(guān)鍵是對自變量合理賦值,第二問判定其單調(diào)性需通過定義:在下比較的大小關(guān)系,第三問解不等式,求函數(shù)值域都需要結(jié)合單調(diào)性將抽象函數(shù)轉(zhuǎn)化為具體函數(shù),利用單調(diào)性找到最值點的位置

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的定義域為(0,+∞),且單調(diào)遞增,滿足f(4)=1,f(xy)=f(x)+f(y).
(Ⅰ)證明:f(1)=0;
(Ⅱ)若f(x)+f(x-3)≤1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的定義域為R,對任意的x1,x2都滿足f(x1+x2)=f(x1)+f(x2),當x>0時,f(x)>0.
(I)試判斷并證明f(x)的奇偶性;
(II)試判斷并證明f(x)的單調(diào)性;
(III)若f(cos2θ-3)+f(4m-2mcosθ)>0對所有的θ∈[0,
π2
]
均成立,求實數(shù)m 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市七校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的定義域為

(1)求;

(2)若,且的真子集,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆遼寧朝陽高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的定義域為,部分對應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。

0

下列關(guān)于函數(shù)的命題:

①函數(shù)上是減函數(shù);②如果當時,最大值是,那么的最大值為;③函數(shù)個零點,則;④已知的一個單調(diào)遞減區(qū)間,則的最大值為

其中真命題的個數(shù)是(           )

A、4個    B、3個  C、2個  D、1個

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試理科數(shù)學(xué) 題型:選擇題

已知函數(shù)的定義域為,且,的導(dǎo)函數(shù),函數(shù)的圖象如圖所示.若正數(shù),滿足,則的取值范圍是

    A.    B.  C.    D.

 

查看答案和解析>>

同步練習(xí)冊答案