由y=3x2+1,x=1,x=3及x軸圍成的圖形的面積為
28
28
分析:先確定積分上限為3,積分下限為1,從而利用定積分表示出曲邊梯形的面積,最后用定積分的定義求出所求即可.
解答:解:函數(shù)y=3x2+1與x=1、x=3及x軸圍成的圖形的面積是S=
3
1
(3x2+1)dx

=(x3+x)|13=(23+3)-(13+1)=30-2=28
∴函數(shù)y=3x2與x=1、x=2及x軸圍成的圖形的面積是28
故答案為28
點(diǎn)評(píng):用定積分求面積時(shí),要注意明確被積函數(shù)和積分區(qū)間,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)
2
表示同一個(gè)函數(shù);
②奇函數(shù)的圖象一定通過(guò)直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
⑤設(shè)函數(shù)f(x)是在區(qū)間[a.b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根.
其中正確命題的序號(hào)是
③⑤
③⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個(gè)函數(shù);
②奇函數(shù)的圖象一定通過(guò)直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=3x2+1的圖象可由y=3x2的圖象向上平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
⑤設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根;
其中正確命題的序號(hào)是
③⑤
③⑤
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)
2
表示同一個(gè)函數(shù);
②奇函數(shù)的圖象一定通過(guò)直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
⑤設(shè)函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)-f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實(shí)根.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

由y=3x2+1,x=1,x=3及x軸圍成的圖形的面積為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案